Locally C6 graphs are clique divergent

被引:29
作者
Larrión, F [1 ]
Neumann-Lara, V [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
iterated clique graphs; covering graphs; clique divergence; diameter; clique number;
D O I
10.1016/S0012-365X(99)00233-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique graph kG of a graph G is the intersection graph of the family of all maximal complete subgraphs of G. The iterated clique graphs k(n)G are defined by k(0)G = G and k(n+1)G = kk(n)G. A graph G is said to be k-divergent if \V(k(n)G)\ tends to infinity with n. A graph is locally, C-6 if the neighbours of any given vertex induce an hexagon. We prove that all locally C-6 graphs are k-divergent and that the diameters of the iterated clique graphs also tend to infinity with n while the sizes of the cliques remain bounded. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 20 条
  • [1] [Anonymous], 1995, GRAPH DYNAMICS
  • [2] [Anonymous], 1979, GRADUATE TEXTS MATH
  • [3] Brown M., 1973, New Directions in the Theory of Graphs, P19
  • [4] Burnside W., 1911, Theory of groups of finite order, V2nd
  • [5] Coxeter H.S.M., 1980, Ergebnisse der Mathematik und ihrer Grenzgebiete, V14
  • [6] Escalante F., 1973, ABH MATH SEM HAMBURG, V39, P1973
  • [7] Harary F., 1969, GRAPH THEORY
  • [8] HEDMAN B, 1983, GRAPH THEORY NEWSLET, V12
  • [9] Larrión F, 1999, DISCRETE MATH, V197, P491
  • [10] A family of clique divergent graphs with linear growth
    Larrion, F
    NeumannLara, V
    [J]. GRAPHS AND COMBINATORICS, 1997, 13 (03) : 263 - 266