Evaluation of soybean lines and environmental stratification using the AMMI, GGE biplot, and factor analysis methods

被引:19
|
作者
Sousa, L. B. [1 ]
Hamawaki, O. T. [2 ]
Nogueira, A. P. O. [3 ]
Batista, R. O. [4 ]
Oliveira, V. M. [5 ]
Hamawaki, R. L. [6 ]
机构
[1] Univ Fed Uberlandia, Inst Ciencias Agr, Lab Melhoramento Plantas, Av Engenheiro Dinz 1178,CP 593, BR-38400 Uberlandia, MG, Brazil
[2] Univ Fed Uberlandia, Inst Ciencias Agr, Programa Melhoramento Soja, BR-38400 Uberlandia, MG, Brazil
[3] Univ Fed Uberlandia, Inst Genet & Bioquim, Programa Melhoramento Soja, BR-38400 Uberlandia, MG, Brazil
[4] Univ Fed Vicosa, Dept Genet & Bioquim, Vicosa, MG, Brazil
[5] Univ Fed Goias, Programa Melhoramento Soja, Palmeiras Do Goias, Go, Brazil
[6] So Illinois Univ, Agron Res Ctr, Carbondale, IL 62901 USA
关键词
Glycine max; Genotype selections; Multivariate techniques; Grain yield; ADAPTABILITY; GENOTYPES; YIELD;
D O I
10.4238/2015.October.19.10
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the final phases of new soybean cultivar development, lines are cultivated in several locations across multiple seasons with the intention of identifying and selecting superior genotypes for quantitative traits. In this context, this study aimed to study the genotype-by-environment interaction for the trait grain yield (kg/ha), and to evaluate the adaptability and stability of early-cycle soybean genotypes using the additive main effects and multiplicative interaction (AMMI) analysis, genotype main effects and genotype x environment interaction (GGE) biplot, and factor analysis methods. Additionally, the efficiency of these methods was compared. The experiments were carried out in five cities in the State of Mato Grosso: Alto Taquari, Lucas do Rio Verde, Sinop, Querencia, and Rondonopolis, in the 2011/2012 and 2012/2013 seasons. Twenty-seven early-cycle soybean genotypes were evaluated, consisting of 22 lines developed by Universidade Federal de Uberlndia (UFU) soybean breeding program, and five controls: UFUS Carajas, MSOY 6101, MSOY 7211, UFUS Guarani, and Riqueza. Significant and complex genotype-by-environment interactions were observed. The AMMI model presented greater efficiency by retaining most of the variation in the first two main components (61.46%), followed by the GGE biplot model (57.90%), and factor analysis (54.12%). Environmental clustering among the methodologies was similar, and was composed of one environmental group from one location but from different seasons. Genotype G5 presented an elevated grain yield, and high adaptability and stability as determined by the AMMI, factor analysis, and GGE biplot methodologies.
引用
收藏
页码:12660 / 12674
页数:15
相关论文
共 50 条
  • [1] Evaluation of maize hybrids and environmental stratification by the methods AMMI and GGE biplot
    de Oliveira, Rogerio Lunezzo
    Von Pinho, Renzo Garcia
    Balestre, Marcio
    Ferreira, Denys Vitor
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2010, 10 (03) : 247 - 253
  • [2] Evaluation of sugarcane genotypes and production environments in Parana by GGE biplot and AMMI analysis
    Costa de Mattos, Pedro Henrique
    de Oliveira, Ricardo Augusto
    Bespalhok Filho, Joao Carlos
    Daros, Edelclaiton
    Aloiso Verissimo, Mario Alvaro
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2013, 13 (01): : 83 - 90
  • [3] Evaluation of Grain Yield Stability in Some Selected Wheat Genotypes Using AMMI and GGE Biplot Methods
    Omrani, Ali
    Omrani, Saeed
    Khodarahmi, Manoochehr
    Shojaei, Seyed Habib
    Illes, Arpad
    Bojtor, Csaba
    Mousavi, Seyed Mohammad Nasir
    Nagy, Janos
    AGRONOMY-BASEL, 2022, 12 (05):
  • [4] AMMI and SREG GGE biplot analysis for matching varieties onto soybean production environments in Ethiopia
    Asfaw, Asrat
    Alemayehu, Fistum
    Gurum, Fekadu
    Atnaf, Mulugeta
    SCIENTIFIC RESEARCH AND ESSAYS, 2009, 4 (11): : 1322 - 1330
  • [5] EVALUATION OF UPLAND COTTON GENOTYPES FOR STABILITY OVER DIFFERENT LOCATIONS USING AMMI AND GGE BIPLOT ANALYSIS
    ABRO, S. A. I. F. U. L. L. A. H.
    RIZWAN, M. U. H. A. M. M. A. D.
    RAJPUT, M. U. H. A. M. M. A. D. T. A. H. I. R.
    SIAL, M. A. H. B. O. O. B. A. L. I.
    DEHO, Z. A. H. E. E. R. A. H. M. E. D.
    PAKISTAN JOURNAL OF BOTANY, 2022, 54 (05) : 1733 - 1739
  • [6] GGE Biplot and AMMI Analysis of Barley Yield Performance in Iran
    Vaezi, B.
    Pour-Aboughadareh, A.
    Mohammadi, R.
    Armion, M.
    Mehraban, A.
    Hossein-Pour, T.
    Dorii, M.
    CEREAL RESEARCH COMMUNICATIONS, 2017, 45 (03) : 500 - 511
  • [7] GGE Biplot and AMMI Analysis of Barley Yield Performance in Iran
    B. Vaezi
    A. Pour-Aboughadareh
    R. Mohammadi
    M. Armion
    A. Mehraban
    T. Hossein-Pour
    M. Dorii
    Cereal Research Communications, 2017, 45 : 500 - 511
  • [8] Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China
    Runhui Wang
    Dehuo Hu
    Huiquan Zheng
    Shu Yan
    Ruping Wei
    JournalofForestryResearch, 2016, 27 (03) : 659 - 664
  • [9] Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China
    Runhui Wang
    Dehuo Hu
    Huiquan Zheng
    Shu Yan
    Ruping Wei
    Journal of Forestry Research, 2016, 27 : 659 - 664
  • [10] STABILITY AND ADAPTABILITY ANALYSIS IN SUGAR BEET VARIETIES FOR SUGAR CONTENT USING GGE-BIPLOT AND AMMI METHODS
    Mostafavi, Khodadad
    Orazizadeh, Mohammadreza
    Rajabi, Abazar
    Ilkaei, Mohammad Nabi
    BULGARIAN JOURNAL OF AGRICULTURAL SCIENCE, 2018, 24 (01): : 40 - 45