Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 61 条
  • [21] Delayed rejection in reversible jump Metropolis-Hastings
    Green, PJ
    Mira, A
    [J]. BIOMETRIKA, 2001, 88 (04) : 1035 - 1053
  • [22] On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables
    Gustafson, P
    [J]. STATISTICAL SCIENCE, 2005, 20 (02) : 111 - 129
  • [23] An adaptive Metropolis algorithm
    Haario, H
    Saksman, E
    Tamminen, J
    [J]. BERNOULLI, 2001, 7 (02) : 223 - 242
  • [24] DRAM: Efficient adaptive MCMC
    Haario, Heikki
    Laine, Marko
    Mira, Antonietta
    Saksman, Eero
    [J]. STATISTICS AND COMPUTING, 2006, 16 (04) : 339 - 354
  • [26] The Assessment of Atrial Function in Single Ventricle Hearts from Birth to Fontan: A Speckle-Tracking Study by Using Strain and Strain Rate
    Khoo, Nee Scze
    Smallhorn, Jeffrey F.
    Kaneko, Sachie
    Kutty, Shelby
    Altamirano, Luis
    Tham, Edythe B.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2013, 26 (07) : 756 - 764
  • [27] Pulmonary regurgitation: The effects of varying pulmonary artery compliance, and of increased resistance proximal or distal to the compliance
    Kilner, Philip J.
    Balossino, Rossella
    Dubini, Gabriele
    Babu-Narayan, Sonya V.
    Taylor, Andrew M.
    Pennati, Giancarlo
    Migliavacca, Francesco
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2009, 133 (02) : 157 - 166
  • [28] OPTIMIZATION BY SIMULATED ANNEALING - QUANTITATIVE STUDIES
    KIRKPATRICK, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) : 975 - 986
  • [29] Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: Two patient-specific cases
    Kung, Ethan
    Baretta, Alessia
    Baker, Catriona
    Arbia, Gregory
    Biglino, Giovanni
    Corsini, Chiara
    Schievano, Silvia
    Vignon-Clementel, Irene E.
    Dubini, Gabriele
    Pennati, Giancarlo
    Taylor, Andrew
    Dorfman, Adam
    Hlavacek, Anthony M.
    Marsden, Alison L.
    Hsia, Tain-Yen
    Migliavacca, Francesco
    [J]. JOURNAL OF BIOMECHANICS, 2013, 46 (02) : 423 - 429
  • [30] Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo inversion of time-lapse ground-penetrating radar data
    Laloy, Eric
    Linde, Niklas
    Vrugt, Jasper A.
    [J]. WATER RESOURCES RESEARCH, 2012, 48