Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 61 条
  • [1] On the ergodicity properties of some adaptive MCMC algorithms
    Andrieu, Christophe
    Moulines, Eric
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (03) : 1462 - 1505
  • [2] A tutorial on adaptive MCMC
    Andrieu, Christophe
    Thoms, Johannes
    [J]. STATISTICS AND COMPUTING, 2008, 18 (04) : 343 - 373
  • [3] [Anonymous], 2013, Bayesian data analysis, third edition
  • [4] [Anonymous], 2004, MONTE CARLO STAT MET
  • [5] CADCS SIMULATION OF THE CLOSED-LOOP CARDIOVASCULAR-SYSTEM
    AVANZOLINI, G
    BARBINI, P
    CAPPELLO, A
    CEVENINI, G
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1988, 22 (01): : 39 - 49
  • [6] TIME-VARYING MECHANICAL-PROPERTIES OF THE LEFT-VENTRICLE - A COMPUTER-SIMULATION
    AVANZOLINI, G
    BARBINI, P
    CAPPELLO, A
    CEVESE, A
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1985, 32 (10) : 756 - 763
  • [7] COMPARISON OF ALGORITHMS FOR TRACKING SHORT-TERM CHANGES IN ARTERIAL CIRCULATION PARAMETERS
    AVANZOLINI, G
    BARBINI, P
    CAPPELLO, A
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (08) : 861 - 867
  • [8] Modeling single ventricle physiology: review of engineering tools to study first stage palliation of hypoplastic left heart syndrome
    Biglino, Giovanni
    Giardini, Alessandro
    Hsia, Tain-Yen
    Figliola, Richard
    Taylor, Andrew M.
    Schievano, Silvia
    [J]. FRONTIERS IN PEDIATRICS, 2013, 1
  • [9] BOX GEP, 1965, BIOMETRIKA, V52, P355, DOI 10.2307/2333689
  • [10] MODEL SELECTION FOR VENTRICULAR MECHANICS - A SENSITIVITY ANALYSIS APPROACH
    CAPPELLO, A
    CEVENINI, G
    AVANZOLINI, G
    [J]. JOURNAL OF BIOMEDICAL ENGINEERING, 1987, 9 (01): : 13 - 20