On twin primes associated with the Hawkins random sieve

被引:4
作者
Bui, H. M. [1 ]
Keating, J. P. [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.jnt.2005.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an asymptotic formula for the number of k-difference twin primes associated with the Hawkins random sieve, which is a probabilistic model of the Eratosthenes sieve. The formula for k = 1 was obtained by M.C. Wunderlich [A probabilistic setting for prime number theory, Acta Arith. 26 (1974) 59-81]. We here extend this to k >= 2 and generalize it to all l-tuples of Hawkins primes. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:284 / 296
页数:13
相关论文
共 12 条
[1]  
CRAMER H, 1937, ACTA ARITH, V2, P23
[2]  
GREEN B, MATHNT0404188
[3]   Some problems of 'partitio numerorum', III On the expression of a number as a sum of primes [J].
Hardy, GH ;
Littlewood, JE .
ACTA MATHEMATICA, 1923, 44 (01) :1-70
[4]  
Hawkins D., 1957, MATH MAG, V31, P1
[5]  
HAWKINS D, 1974, J NUMBER THEORY, V6, P192
[6]   LOG LOG IMPROVEMENT TO RIEMANN HYPOTHESIS FOR HAWKINS RANDOM SIEVE [J].
HEYDE, CC .
ANNALS OF PROBABILITY, 1978, 6 (05) :870-875
[7]  
HEYDE CC, 1976, P AM MATH SOC, V56, P277
[8]  
NEUDECKER W, 1974, COMPOS MATH, V29, P197
[9]   TWIN PRIMES AND GAPS BETWEEN SUCCESSIVE PRIMES FOR HAWKINS RANDOM SIEVE [J].
NEUDECKER, W .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (MAR) :365-367
[10]  
RIBENBOIM P, 1989, BOOK PRIME NUMBER RE