ON INTERIOR C2-ESTIMATES FOR THE MONGE-AMPERE EQUATION

被引:4
作者
Maldonado, Diego [1 ]
机构
[1] Kansas State Univ, Dept Math, 138 Cardwell Hall, Manhattan, KS 66506 USA
关键词
Monge-Ampere equation; linearized Monge-Ampere equation;
D O I
10.3934/dcds.2018058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approach towards apriori interior C-2-estimates for the Monge-Ampere equation based on a mean-value inequality for nonnegative subsolutions to the linearized Monge-Ampere equation is implemented.
引用
收藏
页码:1427 / 1440
页数:14
相关论文
共 12 条
  • [1] [Anonymous], 2008, Adv. Lect. Math. (ALM)
  • [2] Caffarelli LA, 1997, AM J MATH, V119, P423
  • [3] THE INTERIOR C2 ESTIMATE FOR THE MONGE-AMPERE EQUATION IN DIMENSION n=2
    Chen, Chuanqiang
    Han, Fei
    Ou, Qianzhong
    [J]. ANALYSIS & PDE, 2016, 9 (06): : 1419 - 1432
  • [4] THE MONGE-AMPERE EQUATION AND ITS LINK TO OPTIMAL TRANSPORTATION
    De Philippis, Guido
    Figalli, Alessio
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 527 - 580
  • [5] Figalli A, 2017, ZUR LECT ADV MATH, P1, DOI 10.4171/170
  • [6] Properties of the solutions to the Monge-Ampere equation
    Forzani, L
    Maldonado, D
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (5-6) : 815 - 829
  • [7] GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
  • [8] Gutierrez C.E, 2001, Progress in Nonlinear Differential Equations and Their Applications
  • [9] Han Q., 2011, COURANT LECT NOTES, V1
  • [10] On Pogorelov estimates in optimal transportation and geometric optics
    Jiang, Feida
    Trudinger, Neil S.
    [J]. BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (03) : 407 - 431