Effects of WC phase contents on the microstructure, mechanical properties and tribological behaviors of WC/a-C superlattice coatings

被引:68
作者
Pu, Jibin [1 ]
He, Dongqing [2 ,3 ]
Wang, Liping [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Protect Technol Zhejiang Pro, Key Lab Marine Mat & Related Technol, Ningbo 315201, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Nanocomposite; WC/a-C superlattice coatings; Microstructure; Tribological properties; CARBON-FILMS; NANOCRYSTALLINE WC; DEPOSITION; TEMPERATURE; FRICTION; MODEL; WEAR;
D O I
10.1016/j.apsusc.2015.09.181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocomposite WC/a-C coatings with variable contents of tungsten carbide (WC1-x) and amorphous carbon (a-C) were successfully fabricated using a magnetron sputtering process. The microstructure, mechanical properties and tribological behaviors of the as-fabricated coatings were investigated and compared. The results showed that the "superlattice coating" feature of an alternating multilayer structure with a-C and WC1-x nanocrystallites layers on the nanoscale was formed. These multilayer superlattice structures led to diminished residual stress and improved the strength of the adhesion to the substrate. The WC/a-C coating with W 5.43 at.% exhibited low friction coefficients of 0.05 at 25 degrees C and 0.28 at 200 degrees C. This significant improvement in the tribological performances of the WC/a-C coating was mainly attributed to the superior "superlattice" microstructure and the formation of a continuously compacted tribofilms, which was rich in graphitized carbon at 25 degrees C and dominated by the friction triggered WO3 at 200 degrees C. Moreover, the WC/a-C coating with W 5.43 at.% achieved optimal anti-wear properties at 25 degrees C due to the synergistic combination of the enhancement effects of the WC1-x, nanoparticles and the partition effect from the transfer film that restricted direct contact of the steel ball with the coating and thus prevented further intense wear. The accelerated wear of the WC/a-C coating with the increase of the WC phase content at 200 degrees C might be due to the combination of oxidation wear and abrasive wear that originated from the WC1-x phase. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2039 / 2047
页数:9
相关论文
共 44 条
[1]   Tailored synthesis of nanostructured WC/a-C coatings by dual magnetron sputtering [J].
Abad, M. D. ;
Munoz-Marquez, M. A. ;
El Mrabet, S. ;
Justo, A. ;
Sanchez-Lopez, J. C. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (21-22) :3490-3500
[2]   High temperature tribological behavior of W-DLC against aluminum [J].
Abou Gharam, A. ;
Lukitsch, M. J. ;
Balogh, M. P. ;
Irish, N. ;
Alpas, A. T. .
SURFACE & COATINGS TECHNOLOGY, 2011, 206 (07) :1905-1912
[3]   Deposition and characterization of Ti- and W-containing diamond-like carbon films by plasma source ion implantation [J].
Baba, K ;
Hatada, R .
SURFACE & COATINGS TECHNOLOGY, 2003, 169 :287-290
[4]   High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys [J].
Banerji, A. ;
Bhowmick, S. ;
Alpas, A. T. .
SURFACE & COATINGS TECHNOLOGY, 2014, 241 :93-104
[5]   Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization [J].
Baserga, A. ;
Russo, V. ;
Di Fonzo, F. ;
Bailini, A. ;
Cattaneo, D. ;
Casari, C. S. ;
Bassi, A. Li ;
Bottani, C. E. .
THIN SOLID FILMS, 2007, 515 (16) :6465-6469
[6]   Tapping of Al-Si alloys with diamond-like carbon coated tools and minimum quantity lubrication [J].
Bhowmick, S. ;
Lukitsch, M. J. ;
Alpas, A. T. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (15) :2142-2153
[7]   Raman spectroscopy of hydrogenated amorphous carbons [J].
Casiraghi, C ;
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2005, 72 (08)
[8]   Thermal stability of Cr-doped diamond-like carbon films synthesized by cathodic arc evaporation [J].
Chiu, MC ;
Hsieh, WP ;
Ho, WY ;
Wang, DY ;
Shieu, FS .
THIN SOLID FILMS, 2005, 476 (02) :258-263
[9]   Characterization of amorphous and nanocrystalline carbon films [J].
Chu, PK ;
Li, LH .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 96 (2-3) :253-277
[10]   DLC-ceramic multilayers for automotive applications [J].
Cruz, R. ;
Rao, J. ;
Rose, T. ;
Lawson, K. ;
Nicholls, J. R. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (11-12) :2055-2060