Climate change increases cross-species viral transmission risk

被引:530
作者
Carlson, Colin J. [1 ,2 ]
Albery, Gregory F. [1 ,3 ]
Merow, Cory [4 ]
Trisos, Christopher H. [5 ]
Zipfel, Casey M. [1 ]
Eskew, Evan A. [3 ,6 ]
Olival, Kevin J. [3 ]
Ross, Noam [3 ]
Bansal, Shweta [1 ]
机构
[1] Georgetown Univ, Dept Biol, Washington, DC 20057 USA
[2] Georgetown Univ, Ctr Global Hearth Sci & Secur, Washington, DC 20007 USA
[3] EcoHearth Alliance, New York, NY 10018 USA
[4] Univ Connecticut, Eversource Energy Ctr, Storrs, CT USA
[5] Univ Cape Town, African Climate & Dev Initiat, Cape Town, South Africa
[6] Pacific Lutheran Univ, Dept Biol, Tacoma, WA USA
基金
美国国家科学基金会;
关键词
LAND-USE-CHANGE; RANGE EXPANSION; EXTINCTION RISK; UNITED-STATES; BAT; PATHWAYS; FUTURE; SHIFTS; POPULATION; SCENARIOS;
D O I
10.1038/s41586-022-04788-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals(1,2). However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife(3,4). In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 degrees C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.
引用
收藏
页码:555 / +
页数:23
相关论文
共 83 条
[1]   The science of the host-virus network [J].
Albery, Gregory F. ;
Becker, Daniel J. ;
Brierley, Liam ;
Brook, Cara E. ;
Christofferson, Rebecca C. ;
Cohen, Lily E. ;
Dallas, Tad A. ;
Eskew, Evan A. ;
Fagre, Anna ;
Farrell, Maxwell J. ;
Glennon, Emma ;
Guth, Sarah ;
Joseph, Maxwell B. ;
Mollentze, Nardus ;
Neely, Benjamin A. ;
Poisot, Timothee ;
Rasmussen, Angela L. ;
Ryan, Sadie J. ;
Seifert, Stephanie ;
Sjodin, Anna R. ;
Sorrell, Erin M. ;
Carlson, Colin J. .
NATURE MICROBIOLOGY, 2021, 6 (12) :1483-1492
[2]   Predicting the global mammalian viral sharing network using phylogeography [J].
Albery, Gregory F. ;
Eskew, Evan A. ;
Ross, Noam ;
Olival, Kevin J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Global hotspots and correlates of emerging zoonotic diseases [J].
Allen, Toph ;
Murray, Kris A. ;
Zambrana-Torrelio, Carlos ;
Morse, Stephen S. ;
Rondinini, Carlo ;
Di Marco, Moreno ;
Breit, Nathan ;
Olival, Kevin J. ;
Daszak, Peter .
NATURE COMMUNICATIONS, 2017, 8
[4]   Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation [J].
Ancillotto, L. ;
Santini, L. ;
Ranc, N. ;
Maiorano, L. ;
Russo, D. .
SCIENCE OF NATURE, 2016, 103 (3-4)
[5]   What is driving range expansion in a common bat? Hints from thermoregulation and habitat selection [J].
Ancillotto, Leonardo ;
Budinski, Ivana ;
Nardone, Valentina ;
Di Salvo, Ivy ;
Della Corte, Martina ;
Bosso, Luciano ;
Conti, Paola ;
Russo, Danilo .
BEHAVIOURAL PROCESSES, 2018, 157 :540-546
[6]  
[Anonymous], 2019, Millerichthys robustus. The IUCN Red List of Threatened Species 2019: e.T19736A2482411, DOI DOI 10.2305/IUCN.UK.2019-2.RLTS.T19736A2482411.EN
[7]  
[Anonymous], 2022, IPCC CLIMATE CHANGE
[8]   Using species co-occurrence networks to assess the impacts of climate change [J].
Araujo, Miguel B. ;
Rozenfeld, Alejandro ;
Rahbek, Carsten ;
Marquet, Pablo A. .
ECOGRAPHY, 2011, 34 (06) :897-908
[9]   Introduced Avian Diseases, Climate Change, and the Future of Hawaiian Honeycreepers [J].
Atkinson, Carter T. ;
LaPointe, Dennis A. .
JOURNAL OF AVIAN MEDICINE AND SURGERY, 2009, 23 (01) :53-63
[10]   Appropriateness of full-, partial- and no-dispersal scenarios in climate change impact modelling [J].
Bateman, Brooke L. ;
Murphy, Helen T. ;
Reside, April E. ;
Mokany, Karel ;
VanDerWal, Jeremy .
DIVERSITY AND DISTRIBUTIONS, 2013, 19 (10) :1224-1234