Spin-orbit torque in a completely compensated synthetic antiferromagnet

被引:87
作者
Zhang, P. X. [1 ,4 ]
Liao, L. Y. [1 ]
Shi, G. Y. [1 ]
Zhang, R. Q. [1 ]
Wu, H. Q. [2 ]
Wang, Y. Y. [3 ]
Pan, F. [1 ]
Song, C. [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[3] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
MAGNETIC TUNNEL-JUNCTIONS; MAGNETORESISTANCE; MEMORY; METALS; LAYERS;
D O I
10.1103/PhysRevB.97.214403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synthetic antiferromagnets (SAF) have been proposed to replace ferromagnets in magnetic memory devices to reduce the stray field, increase the storage density, and improve the thermal stability. Here, we investigate the spin-orbit torque in a perpendicularly magnetized Pt/[Co/Pd]/Ru/[Co/Pd] SAF structure, which exhibits completely compensated magnetization and an exchange coupling field up to 2100 Oe. The magnetizations of two Co/Pd layers can be switched between two antiparallel states simultaneously by spin-orbit torque. The magnetization switching can be read out due to much stronger spin-orbit coupling at the bottom Pt/[Co/Pd] interface compared to its upper counterpart without Pt. Both experimental and theoretical analyses unravel that the torque efficiency of antiferromagnetically coupled stacks is significantly higher than the ferromagnetic counterpart, making the critical switching current of SAF comparable to the conventional single ferromagnet. Besides adding an important dimension to spin-orbit torque, the efficient switching of completely compensated SAF might advance magnetic memory devices with high density, high speed, and low power consumption.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Magnetoresistive Random Access Memory [J].
Apalkov, Dmytro ;
Dieny, Bernard ;
Slaughter, J. M. .
PROCEEDINGS OF THE IEEE, 2016, 104 (10) :1796-1830
[2]   Anomalous spin-orbit torque switching in synthetic antiferromagnets [J].
Bi, Chong ;
Almasi, Hamid ;
Price, Kyle ;
Newhouse-Illige, Ty ;
Xu, Meng ;
Allen, Shane R. ;
Fan, Xin ;
Wang, Weigang .
PHYSICAL REVIEW B, 2017, 95 (10)
[3]   Writing and reading antiferromagnetic Mn2Au by Neel spin-orbit torques and large anisotropic magnetoresistance [J].
Bodnar, S. Yu. ;
Smejkal, L. ;
Turek, I. ;
Jungwirth, T. ;
Gomonay, O. ;
Sinova, J. ;
Sapozhnik, A. A. ;
Elmers, H. -J. ;
Klaui, M. ;
Jourdan, M. .
NATURE COMMUNICATIONS, 2018, 9
[4]   The emergence of spin electronics in data storage [J].
Chappert, Claude ;
Fert, Albert ;
Van Dau, Frederic Nguyen .
NATURE MATERIALS, 2007, 6 (11) :813-823
[5]   Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators [J].
Chen, X. Z. ;
Zarzuela, R. ;
Zhang, J. ;
Song, C. ;
Zhou, X. F. ;
Shi, G. Y. ;
Li, F. ;
Zhou, H. A. ;
Jiang, W. J. ;
Pan, F. ;
Tserkovnyak, Y. .
PHYSICAL REVIEW LETTERS, 2018, 120 (20)
[6]  
Emori S, 2013, NAT MATER, V12, P611, DOI [10.1038/NMAT3675, 10.1038/nmat3675]
[7]   Spin-Orbit-Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys [J].
Finley, Joseph ;
Liu, Luqiao .
PHYSICAL REVIEW APPLIED, 2016, 6 (05)
[8]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/nmat4566, 10.1038/NMAT4566]
[9]   Penetration Depth of Transverse Spin Current in Ultrathin Ferromagnets [J].
Ghosh, A. ;
Auffret, S. ;
Ebels, U. ;
Bailey, W. E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (12)
[10]  
Haazen PPJ, 2013, NAT MATER, V12, P299, DOI [10.1038/nmat3553, 10.1038/NMAT3553]