Optimal linear representations of images for object recognition

被引:67
作者
Liu, XW [1 ]
Srivastava, A
Gallivan, K
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[3] Florida State Univ, Sch Comp Sci & Informat Technol, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
optimal subspaces; Grassmann manifold; object recognition; linear representations; dimension reduction; optimal component analysis;
D O I
10.1109/TPAMI.2004.1273986
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although linear representations are frequently used in image analysis, their performances are seldom optimal in specific applications. This paper proposes a stochastic gradient algorithm for finding optimal linear representations of images for use in appearance-based object recognition. Using the nearest neighbor classifier, a recognition performance function is specified and linear representations that maximize this performance are sought. For solving this optimization problem on a Grassmann manifold, a stochastic gradient algorithm utilizing intrinsic flows is introduced. Several experimental results are presented to demonstrate this algorithm.
引用
收藏
页码:662 / 666
页数:5
相关论文
共 13 条
[1]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[2]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[3]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[4]   A theory for learning by weight flow on Stiefel-Grassman manifold [J].
Fiori, S .
NEURAL COMPUTATION, 2001, 13 (07) :1625-1647
[5]  
GALLIVAN K, 2003, P 12 IEEE WORKSH STA
[6]   Fast and robust fixed-point algorithms for independent component analysis [J].
Hyvärinen, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :626-634
[7]   Optimization criteria and geometric algorithms for motion and structure estimation [J].
Ma, Y ;
Kosecká, J ;
Sastry, S .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2001, 44 (03) :219-249
[8]   PCA versus LDA [J].
Martìnez, AM ;
Kak, AC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (02) :228-233
[9]  
Robert Christian P, 1999, Monte Carlo statistical methods, V2
[10]  
Sim T, 2003, IEEE T PATTERN ANAL, V25, P1615, DOI 10.1109/TPAMI.2003.1251154