Bezier variant of Bernstein-Durrmeyer blending-type operators

被引:1
作者
Prakash, Chandra [1 ]
Deo, Naokant [1 ]
Verma, D. K. [2 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
[2] Univ Delhi, Dept Math, Miranda House, Delhi 110007, India
关键词
Bezier operators; Lipschitz-type space; modulus of continuity; rate of convergence; LOCAL APPROXIMATION; CONVERGENCE;
D O I
10.1142/S1793557122501030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the Bezier variant of the Bernstein-Durrmeyer-type operators. First, we estimated the moments for these operators. In the next section, we found the rate of approximation of operators R-n, r, s((rho,) (alpha)) (f; x) using the Lipschitz-type function and in terms of Ditzian-Totik modulus of continuity. The rate of convergence for functions having derivatives of bounded variation is discussed. Finally, the graphical representation of the theoretical results and the effectiveness of the defined operators are given.
引用
收藏
页数:17
相关论文
共 37 条
[1]  
Abel U., 2005, Anal. Theory Appl., V21, P15
[2]  
Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
[3]  
Abel U., 2004, Mediterr. J. Math., V1, P487
[4]   Local approximation by a variant of Bernstein-Durrmeyer operators [J].
Abel, Ulrich ;
Gupta, Vijay ;
Mohapatra, Ram N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3372-3381
[5]   The Durrmeyer variant of an operator defined by DD Stancu [J].
Abel, Ulrich ;
Ivan, Mircea ;
Paltanea, Radu .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :116-123
[6]  
Acar T., 2018, COMMUN FS U ANK SER, V66, P195
[7]   Bezier variant of the Bernstein-Durrmeyer type operators [J].
Acar, Tuncer ;
Agrawal, P. N. ;
Neer, Trapti .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1341-1358
[8]  
Chang G., 1983, J COMPUT MATH, V1, P322
[9]  
Deo N, 2020, AFR MAT, V31, P609, DOI 10.1007/s13370-019-00746-4
[10]  
DeVore R.A, 1993, Constructive Approximation, V303