Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

被引:144
作者
Lovley, DR [1 ]
Anderson, RT
机构
[1] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA
[2] Univ Massachusetts, Dept Civil & Environm Engn, Amherst, MA 01003 USA
关键词
microbial processes; contamination; metals; hydrocarbons; bioremediation;
D O I
10.1007/PL00010974
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 78 条
[1]   LIMITING FACTORS FOR MICROBIAL FE(III)-REDUCTION IN A LANDFILL LEACHATE POLLUTED AQUIFER (VEJEN, DENMARK) [J].
ALBRECHTSEN, HJ ;
HERON, G ;
CHRISTENSEN, TH .
FEMS MICROBIOLOGY ECOLOGY, 1995, 16 (03) :233-247
[2]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[3]  
Anderson R.T., 1999, Bioremediation J, V3, P121, DOI DOI 10.1080/10889869991219271
[4]   Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers [J].
Anderson, RT ;
Rooney-Varga, JN ;
Gaw, CV ;
Lovley, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (09) :1222-1229
[5]  
Anderson RT, 1997, ADV MICROB ECOL, V15, P289
[6]  
ANDERSON RT, 1999, US GEOLOGICAL SURVEY, P177
[7]   MODERN MARINE-SEDIMENTS AS A NATURAL ANALOG TO THE CHEMICALLY STRESSED ENVIRONMENT OF A LANDFILL [J].
BAEDECKER, MJ ;
BACK, W .
JOURNAL OF HYDROLOGY, 1979, 43 (1-4) :393-414
[8]   CRUDE-OIL IN A SHALLOW SAND AND GRAVEL AQUIFER .3. BIOGEOCHEMICAL REACTIONS AND MASS-BALANCE MODELING IN ANOXIC GROUNDWATER [J].
BAEDECKER, MJ ;
COZZARELLI, IM ;
EGANHOUSE, RP ;
SIEGEL, DI ;
BENNETT, PC .
APPLIED GEOCHEMISTRY, 1993, 8 (06) :569-586
[9]  
BAEDECKER MJ, 1992, 7 INT S WAT ROCK INT
[10]   Distribution of microbial physiologic types in an aquifer contaminated by crude oil [J].
Bekins, BA ;
Godsy, EM ;
Warren, E .
MICROBIAL ECOLOGY, 1999, 37 (04) :263-275