Rational surfaces with finitely generated Cox rings and very high Picard numbers

被引:5
作者
Leticia De la Rosa-Navarro, Brenda [1 ]
Bosco Frias-Medina, Juan [2 ]
Lahyane, Mustapha [2 ]
机构
[1] Univ Autonoma Baja Calif, Fac Ciencias, Km 103 Carretera Tijuana Ensenada, Ensenada 22860, Baja California, Mexico
[2] UMSNH, IFM, Edificio C-3,Ciudad Univ, Morelia 58040, Michoacan, Mexico
关键词
Cox rings; Rational surfaces; Anticanonical Iitaka dimension; Effective monoid; Geometrically ruled surfaces; Blowing-up; PROJECTIVE SURFACES;
D O I
10.1007/s13398-016-0296-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide new families of smooth projective rational surfaces whose Cox rings are finitely generated. These surfaces are constructed by blowing-up points in Hirzebruch surfaces and may have very high Picard numbers. Such construction is not straightforward, and we achieve our results using the facts that these surfaces are extremal, and their effective monoids are finitely generated. Furthermore, we give an example illustrating the existence of rational surfaces which are not extremal. The base field of our varieties is assumed to be algebraically closed of arbitrary characteristic.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 5 条
  • [1] Rational surfaces with finitely generated Cox rings and very high Picard numbers
    Brenda Leticia De La Rosa-Navarro
    Juan Bosco Frías-Medina
    Mustapha Lahyane
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 297 - 306
  • [2] Some non-finitely generated Cox rings
    Gonzalez, Jose Luis
    Karu, Kalle
    COMPOSITIO MATHEMATICA, 2016, 152 (05) : 984 - 996
  • [3] COX RINGS OF EXTREMAL RATIONAL ELLIPTIC SURFACES
    Artebani, Michela
    Garbagnati, Alice
    Laface, Antonio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) : 1735 - 1757
  • [4] Picard-graded Betti numbers and the defining ideals of Cox rings
    Laface, Antonio
    Velasco, Mauricio
    JOURNAL OF ALGEBRA, 2009, 322 (02) : 353 - 372
  • [5] Cox rings of K3 surfaces of Picard number three
    Artebani, Michela
    Correa Deisler, Claudia
    Laface, Antonio
    JOURNAL OF ALGEBRA, 2021, 565 : 598 - 626