Generalized Humbert polynomials via generalized Fibonacci polynomials

被引:10
作者
Wang, Weiping [1 ]
Wang, Hui [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized; (p; q)-Fibonacci polynomials; q)-Lucas polynomials; Generalized Humbert polynomials; Combinatorial identities; Determinants; JACOBSTHAL; CONVOLUTIONS; CHEBYSHEV; FORMULAS;
D O I
10.1016/j.amc.2017.02.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define the generalized (p, q)-Fibonacci polynomials u(n, m) (x) and generalized (p, q)-Lucas polynomials v(n,m) (x), and further introduce the generalized Humbert polynomials u(n,m)((r)) (x) as the convolutions of u(n, m) (x). We give many expressions, expansions, recurrence relations and differential recurrence relations of u(n,m)((r)) (x), and study the matrices and determinants related to the polynomials u(n,m) (x), v(n,m) (x) and u(n,m)((r)) (x). Finally, we present an algebraic interpretation for the generalized Humbert polynomials u(n,m)((r)) (x). It can be found that various well-known polynomials are special cases of u(n,m) (x), v(n,m) (x) or u(n,m)((r)) (x). Therefore, by introducing the general polynomials u(n,m) (x), v(n,m) (x) and u(n,m)((r)) (x), we have a unified approach to dealing with many special polynomials in the literature. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 42 条
  • [1] [Anonymous], 1992, HDB IMPEDANCE FUNCTI
  • [2] [Anonymous], 1986, MATH APPL
  • [3] [Anonymous], 2009, INT J MATH MATH SCI
  • [4] [Anonymous], 2013, INT SCH RES NOTICES, DOI DOI 10.1155/2013/759641.ARTICLE
  • [5] [Anonymous], 2012, SCIENTIA AMS
  • [6] [Anonymous], ENCY MATH
  • [7] [Anonymous], 1989, PROC NATL ACAD SCI I
  • [8] [Anonymous], ANN COMBINATORICS
  • [9] A generalization of Lucas polynomial sequence
    Cheon, Gi-Sang
    Kim, Hana
    Shapiro, Louis W.
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 920 - 927
  • [10] Comtet L., 1974, Advanced combinatorics