Graph Kernels

被引:48
作者
Borgwardt, Karsten [1 ]
Ghisu, Elisabetta [1 ]
Llinares-Lopez, Felipe [1 ]
O'Bray, Leslie [1 ]
Rieck, Bastian [1 ]
机构
[1] Swiss Fed Inst Technol, Machine Learning & Computat Biol Lab, D BSSE, Swiss Inst Bioinformat, Basel, Switzerland
来源
FOUNDATIONS AND TRENDS IN MACHINE LEARNING | 2020年 / 13卷 / 5-6期
关键词
CLASSIFICATION; ALGORITHMS; PREDICTION;
D O I
10.1561/2200000076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-structured data are an integral part of many application domains, including chemoinformatics, computational biology, neuroimaging, and social network analysis. Over the last two decades, numerous graph kernels, i.e. kernel functions between graphs, have been proposed to solve the problem of assessing the similarity between graphs, thereby making it possible to perform predictions in both classification and regression settings. This manuscript provides a review of existing graph kernels, their applications, software plus data resources, and an empirical comparison of state-of-the-art graph kernels.
引用
收藏
页码:531 / 712
页数:182
相关论文
共 162 条
[91]   A survey on graph kernels [J].
Kriege, Nils M. ;
Johansson, Fredrik D. ;
Morris, Christopher .
APPLIED NETWORK SCIENCE, 2020, 5 (01)
[92]   A unifying view of explicit and implicit feature maps of graph kernels [J].
Kriege, Nils M. ;
Neumann, Marion ;
Morris, Christopher ;
Kersting, Kristian ;
Mutzel, Petra .
DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (06) :1505-1547
[93]   Metric learning with spectral graph convolutions on brain connectivity networks [J].
Ktena, Sofia Ira ;
Parisot, Sarah ;
Ferrante, Enzo ;
Rajchl, Martin ;
Lee, Matthew ;
Glocker, Ben ;
Rueckert, Daniel .
NEUROIMAGE, 2018, 169 :431-442
[94]  
Lanckriet GRG, 2004, J MACH LEARN RES, V5, P27
[95]  
Lee J. A., 2012, IMAGE PROCESSING ANA, P351
[96]  
Leskovec J., 2007, ACM Transactions on the Web (TWEB), V1
[97]  
Levi G., 1973, Calcolo, V9, P341, DOI [10.1007/BF02575586, DOI 10.1007/BF02575586]
[98]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489
[99]   The Genotype-Tissue Expression (GTEx) project [J].
Lonsdale, John ;
Thomas, Jeffrey ;
Salvatore, Mike ;
Phillips, Rebecca ;
Lo, Edmund ;
Shad, Saboor ;
Hasz, Richard ;
Walters, Gary ;
Garcia, Fernando ;
Young, Nancy ;
Foster, Barbara ;
Moser, Mike ;
Karasik, Ellen ;
Gillard, Bryan ;
Ramsey, Kimberley ;
Sullivan, Susan ;
Bridge, Jason ;
Magazine, Harold ;
Syron, John ;
Fleming, Johnelle ;
Siminoff, Laura ;
Traino, Heather ;
Mosavel, Maghboeba ;
Barker, Laura ;
Jewell, Scott ;
Rohrer, Dan ;
Maxim, Dan ;
Filkins, Dana ;
Harbach, Philip ;
Cortadillo, Eddie ;
Berghuis, Bree ;
Turner, Lisa ;
Hudson, Eric ;
Feenstra, Kristin ;
Sobin, Leslie ;
Robb, James ;
Branton, Phillip ;
Korzeniewski, Greg ;
Shive, Charles ;
Tabor, David ;
Qi, Liqun ;
Groch, Kevin ;
Nampally, Sreenath ;
Buia, Steve ;
Zimmerman, Angela ;
Smith, Anna ;
Burges, Robin ;
Robinson, Karna ;
Valentino, Kim ;
Bradbury, Deborah .
NATURE GENETICS, 2013, 45 (06) :580-585
[100]  
Lu Bai, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8724, P99, DOI 10.1007/978-3-662-44848-9_7