Data-driven fracture mechanics

被引:91
作者
Carrara, P. [1 ]
De Lorenzis, L. [1 ]
Stainier, L. [2 ]
Ortiz, M. [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Tannenstr 3, CH-8092 Zurich, Switzerland
[2] Ecole Cent Nantes, Inst Rech Genie Civil & Mecan, GeM, UMR 6183, 1 Rue Noe BP 92101, F-44321 Nantes 3, France
[3] CALTECH, Div Engn & Appl Sci, 1200 East Calif Blvd, Pasadena, CA 91125 USA
关键词
Data-driven computational mechanics; Fracture mechanics; Model-free; Numerical modeling;
D O I
10.1016/j.cma.2020.113390
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new data-driven paradigm for variational brittle fracture mechanics. The fracture-related material modeling assumptions are removed and the governing equations stemming from variational principles are combined with a set of discrete data points, leading to a model-free data-driven method of solution. The solution at a given load step is identified as the point within the data set that best satisfies either the Kuhn-Tucker conditions stemming from the variational fracture problem or global minimization of a suitable energy functional, leading to data-driven counterparts of both the local and the global minimization approaches of variational fracture mechanics. Both formulations are tested on different test configurations with and without noise and for Griffith and R-curve type fracture behavior. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:27
相关论文
共 22 条
[1]   Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example [J].
Alessi, Roberto .
ACTA MECHANICA, 2016, 227 (10) :2805-2829
[2]  
[Anonymous], J COMPUTING CIVIL EN, DOI 10.1061/(asce)0887-3801(1987)1:2(128)
[3]   A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality [J].
Bessa, M. A. ;
Bostanabad, R. ;
Liu, Z. ;
Hu, A. ;
Apley, Daniel W. ;
Brinson, C. ;
Chen, W. ;
Liu, Wing Kam .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 :633-667
[4]   The variational approach to fracture [J].
Bourdin, Blaise ;
Francfort, Gilles A. ;
Marigo, Jean-Jacques .
JOURNAL OF ELASTICITY, 2008, 91 (1-3) :5-148
[5]   Data-Driven Finite Elasticity [J].
Conti, S. ;
Mueller, S. ;
Ortiz, M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (01) :1-33
[6]   Model-Free Data-Driven inelasticity [J].
Eggersmann, R. ;
Kirchdoerfer, T. ;
Reese, S. ;
Stainier, L. ;
Ortiz, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 350 :81-99
[7]   KNOWLEDGE-BASED MODELING OF MATERIAL BEHAVIOR WITH NEURAL NETWORKS [J].
GHABOUSSI, J ;
GARRETT, JH ;
WU, X .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1991, 117 (01) :132-153
[8]   Data-driven non-linear elasticity: constitutive manifold construction and problem discretization [J].
Ibanez, Ruben ;
Borzacchiello, Domenico ;
Aguado, Jose Vicente ;
Abisset-Chavanne, Emmanuelle ;
Cueto, Elias ;
Ladeveze, Pierre ;
Chinesta, Francisco .
COMPUTATIONAL MECHANICS, 2017, 60 (05) :813-826
[9]  
Ibanez Ruben, 2017, AIP C P, V1896
[10]   Mixed-integer programming formulation of a data-driven solver in computational elasticity [J].
Kanno, Yoshihiro .
OPTIMIZATION LETTERS, 2019, 13 (07) :1505-1514