Hardy-Sobolev-Maz'ya type equations in bounded domains

被引:24
作者
Bhakta, M. [1 ]
Sandeep, K. [1 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
GLOBAL COMPACTNESS RESULT; HYPERBOLIC SYMMETRY; ELLIPTIC-EQUATIONS; NONLINEARITIES; EXISTENCE;
D O I
10.1016/j.jde.2008.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity, Palais-Smale characterization and existence/nonexistence of solutions of the Hardy-Sobolev-Maz'ya equation -Delta u - lambda u/vertical bar y vertical bar(2) = vertical bar u vertical bar(pt-1) u/vertical bar y vertical bar(t) in a bounded domain in R-N where x is an element of R-N is denoted as x = (y, z) is an element of R-k x RN-k and P-t = N+2-2t/N-2 . we show different behaviors of PS sequences depending on t = 0 or t > 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:119 / 139
页数:21
相关论文
共 16 条
[1]  
CAO D, METHODS APP IN PRESS
[2]   Solutions to critical elliptic equations with multi-singular inverse square potentials [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :332-372
[3]   A global compactness result for singular elliptic problems involving critical Sobolev exponent [J].
Cao, DM ;
Peng, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (06) :1857-1866
[4]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[5]  
CARON JM, 1984, C R ACAD SCI PARIS 1, V299, P209
[6]  
Castorina D, 2008, REND LINCEI-MAT APPL, V19, P189
[7]   Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations [J].
Castorina, D. ;
Fabbri, I. ;
Mancini, G. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1187-1206
[8]   Classification of solutions of a critical Hardy-Sobolev operator [J].
Mancini, G. ;
Fabbri, I. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :258-276
[9]  
MANCINI G, ANN SC NO S IN PRESS
[10]  
MAZ'JA V. G., 1985, SPRINGER SER SOVIET