Validation of non-REM sleep stage decoding from resting state fMRI using linear support vector machines

被引:30
作者
Altmann, A. [1 ,2 ]
Schroeter, M. S. [1 ,3 ]
Spoormaker, V. I. [1 ]
Kiem, S. A. [1 ]
Jordan, D. [4 ]
Ilg, R. [5 ,6 ]
Bullmore, E. T. [3 ]
Greicius, M. D. [2 ]
Czisch, M. [1 ]
Saemann, P. G. [1 ]
机构
[1] Max Planck Inst Psychiat, Dept Translat Res Psychiat, Neuroimaging, D-80804 Munich, Germany
[2] Stanford Univ, Stanford Ctr Memory Disorders, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[3] Univ Cambridge, Dept Psychiat, Behav & Clin Neurosci Inst, Cambridge, England
[4] Tech Univ Munich, Klinikum Rechts Isar, Dept Anesthesiol, D-80290 Munich, Germany
[5] Tech Univ Munich, Klinikum Rechts Isar, Dept Neurol, D-80290 Munich, Germany
[6] Asklepios Stadtklin, Bad Tolz, Germany
关键词
Resting state fMRI; EEG; EEG-fMRI; Sleep; Classification; DEFAULT-MODE NETWORK; INTRINSIC FUNCTIONAL CONNECTIVITY; HUMAN BRAIN; MRI; CLASSIFICATION; FLUCTUATIONS; WAKEFULNESS; MODULATION; FREQUENCY; DURATION;
D O I
10.1016/j.neuroimage.2015.09.072
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A growing body of literature suggests that changes in consciousness are reflected in specific connectivity patterns of the brain as obtained from resting state fMRI (rs-fMRI). As simultaneous electroencephalography (EEG) is often unavailable, decoding of potentially confounding sleep patterns from rs-fMRI itself might be useful and improve data interpretation. Linear support vector machine classifiers were trained on combined rs-fMRI/EEG recordings from 25 subjects to separate wakefulness (S0) from non-rapid eye movement (NREM) sleep stages 1 (S1), 2 (S2), slow wave sleep (SW) and all three sleep stages combined (SX). Classifier performance was quantified by a leave-one-subject-out cross-validation (LOSO-CV) and on an independent validation dataset comprising 19 subjects. Results demonstrated excellent performance with areas under the receiver operating characteristics curve (AUCs) close to 1.0 for the discrimination of sleep from wakefulness (S0 vertical bar SX), S0 vertical bar S1, S0 vertical bar S2 and S0|SW, and good to excellent performance for the classification between sleep stages (S1 vertical bar S2: similar to 0.9; S1 vertical bar SW:similar to 1.0; S2 vertical bar SW:similar to 0.8). Application windows of fMRI data from about 70 s were found as minimum to provide reliable classifications. Discrimination patterns pointed to subcortical-cortical connectivity and within-occipital lobe reorganization of connectivity as strongest carriers of discriminative information. In conclusion, we report that functional connectivity analysis allows valid classification of NREM sleep stages. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:544 / 555
页数:12
相关论文
共 65 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[3]   Sleep Spindles and Hippocampal Functional Connectivity in Human NREM Sleep [J].
Andrade, Katia C. ;
Spoormaker, Victor I. ;
Dresler, Martin ;
Wehrle, Renate ;
Holsboer, Florian ;
Saemann, Philipp G. ;
Czisch, Michael .
JOURNAL OF NEUROSCIENCE, 2011, 31 (28) :10331-10339
[4]  
[Anonymous], 2007, AASM MANUAL SCORING
[5]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[6]   Intrinsic brain activity in altered states of consciousness - How conscious is the default mode of brain function? [J].
Boly, M. ;
Phillips, C. ;
Tshibanda, L. ;
Vanhaudenhuyse, A. ;
Schabus, M. ;
Dang-Vu, T. T. ;
Moonen, G. ;
Hustinx, R. ;
Maquet, P. ;
Laureys, S. .
MOLECULAR AND BIOPHYSICAL MECHANISMS OF AROUSAL, ALERTNESS, AND ATTENTION, 2008, 1129 :119-129
[7]   Regional cerebral blood flow throughout the sleep-wake cycle - An (H2O)-O-15 PET study [J].
Braun, AR ;
Balkin, TJ ;
Wesensten, NJ ;
Carson, RE ;
Varga, M ;
Baldwin, P ;
Selbie, S ;
Belenky, G ;
Herscovitch, P .
BRAIN, 1997, 120 :1173-1197
[8]  
Cecchi G., 2009, ADV NEURAL INFO PROC, V22, P252
[9]   Time-frequency dynamics of resting-state brain connectivity measured with fMRI [J].
Chang, Catie ;
Glover, Gary H. .
NEUROIMAGE, 2010, 50 (01) :81-98
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)