Influence of limiting throat and flow regime on oxygen bubble saturation of polymer electrolyte membrane electrolyzer porous transport layers

被引:86
|
作者
Lee, ChungHyuk [1 ]
Hinebaugh, James [1 ]
Banerjee, Rupak [1 ]
Chevalier, Stephane [1 ]
Abouatallah, Rami [2 ]
Wang, Rainey [2 ]
Bazylak, Aimy [1 ]
机构
[1] Univ Toronto, Inst Sustainable Energy, Dept Mech & Ind Engn, Thermofluids Energy & Adv Mat TEAM Lab, Toronto, ON M5S 3G8, Canada
[2] Hydrogen Corp, Adv Stack Technol, 220 Admiral Blvd, Mississauga, ON L5T 2N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer electrolyte membrane electrolyzer; Porous transport layer; Gas diffusion layer; PTL-on-chip; Limiting throat; Flow regime; ON-A-CHIP; HETEROGENEOUS POROSITY DISTRIBUTIONS; GAS-DIFFUSION LAYER; NEUTRON-RADIOGRAPHY; IN-SITU; WATER; VISUALIZATION; DISPLACEMENT; DYNAMICS; MEDIA;
D O I
10.1016/j.ijhydene.2016.09.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the effect of porous transport layer (PTL) microstructure on the growth of oxygen gas bubbles was investigated using a microfluidic platform, termed PTL-on-Chip. The microfluidic chip was designed through stochastic pore network generation and height calibration, and was fabricated using soft-lithography. It was.found that PTL throats have the dominating threshold capillary pressures compared to PTL pores; therefore, the size distribution of PTL throats ultimately govern the distribution of bubbles within the water saturated PTL. A unique throat is herein termed the limiting throat, whereby once it has been penetrated by the bubble, breakthrough instantly follows. This limiting throat is also the location of snap-off for subsequent bubble detachment. Within the porous media, oxygen bubble saturation increased as the distance of the limiting throat from the inlet increased. Lastly, it was observed that the heterogeneity of the PTL structure can enable the simultaneous co-existence of two flow regimes (capillary fingering and viscous fingering) at distinct regions within the bulk. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2724 / 2735
页数:12
相关论文
共 43 条
  • [1] Oxygen bubble transport in a porous transport layer of polymer electrolyte water electrolyzer
    Jeon, Dong Hyup
    Kim, Sangwon
    Kim, MinJoong
    Lee, Changsoo
    Cho, Hyun-Seok
    JOURNAL OF POWER SOURCES, 2023, 553
  • [2] Three-Dimensional Computational Fluid Dynamics Modelling of Oxygen Bubble Transport in Polymer Electrolyte Membrane Electrolyzer Porous Transport Layers
    Arbabi, F.
    Montazeri, H.
    Abouatallah, R.
    Wang, R.
    Bazylak, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3062 - F3069
  • [3] Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers
    Lee, Ch.
    Lee, J. K.
    Zhao, B.
    Fahy, K. F.
    LaManna, J. M.
    Baltic, E.
    Hussey, D. S.
    Jacobson, D. L.
    Schulz, V. P.
    Bazylak, A.
    JOURNAL OF POWER SOURCES, 2020, 446
  • [4] The effect of inlet velocity of water on the two-phase flow regime in the porous transport layer of polymer electrolyte membrane electrolyzer
    S. Z. Hoseini Larimi
    A. Ramiar
    Q. Esmaili
    R. Shafaghat
    Heat and Mass Transfer, 2019, 55 : 1863 - 1870
  • [5] The effect of inlet velocity of water on the two-phase flow regime in the porous transport layer of polymer electrolyte membrane electrolyzer
    Larimi, S. Z. Hoseini
    Ramiar, A.
    Esmaili, Q.
    Shafaghat, R.
    HEAT AND MASS TRANSFER, 2019, 55 (07) : 1863 - 1870
  • [6] On the influence of porous transport layers parameters on the performances of polymer electrolyte membrane water electrolysis cells
    Pushkarev, A. S.
    Pushkareva, I., V
    Solovyev, M. A.
    Prokop, M.
    Bystron, T.
    Rajagopalan, S. K.
    Bouzek, K.
    Grigoriev, S. A.
    ELECTROCHIMICA ACTA, 2021, 399
  • [7] Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers
    Muirhead, Daniel
    Banerjee, Rupak
    George, Michael G.
    Ge, Nan
    Shrestha, Pranay
    Liu, Hang
    Lee, Jongmin
    Bazylak, Aimy
    ELECTROCHIMICA ACTA, 2018, 274 : 250 - 265
  • [8] Correlating nanostructure features to transport properties of polymer electrolyte membrane electrolyzer anode catalyst layers
    Seip, Tess
    Shaigan, Nima
    Dinu, Marius
    Fatih, Khalid
    Bazylak, Aimy
    JOURNAL OF POWER SOURCES, 2023, 559
  • [9] Transient Gas Distribution in Porous Transport Layers of Polymer Electrolyte Membrane Electrolyzers
    Lee, C. H.
    Lee, J. K.
    Zhao, B.
    Fahy, K. F.
    Bazylak, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
  • [10] Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface in Polymer Electrolyte Membrane Water Electrolyzer
    Liu, Chang
    Shviro, Meital
    Bender, Guido
    Gago, Aldo S.
    Morawietz, Tobias
    Dzara, Michael J.
    Biswas, Indro
    Gazdzicki, Pawel
    Kang, Zhenye
    Zaccarine, Sarah F.
    Pylypenko, Svitlana
    Friedrich, K. Andreas
    Carmo, Marcelo
    Lehnert, Werner
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)