ENERGY DECAY FOR ELASTIC WAVE EQUATIONS WITH CRITICAL DAMPING

被引:0
作者
Horbach, Jaqueline Luiza [1 ]
Nakabayashi, Naoki [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, BR-88040270 Florianopolis, SC, Brazil
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
Elastic wave equation; critical damping; multiplier method; total energy; compactly supported initial data; optimal decay; BOUNDARY-VALUE-PROBLEM; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the total energy decays at the rate E-u (t) = O(t(-2)), as t -> +infinity, for solutions to the Cauchy problem of a linear system of elastic wave with a variable damping term. It should be mentioned that the the critical decay satis fi es V (x) >= C-0(1 + vertical bar x vertical bar)(-1) for C-0 > 2b, where b represents the speed of propagation of the P-wave.
引用
收藏
页数:12
相关论文
共 15 条