Minimization of length and curvature on planar curves

被引:1
作者
Boscain, Ugo [1 ]
Charlot, Gregoire [2 ]
Rossi, Francesco [3 ,4 ]
机构
[1] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[2] Inst Fourier, UMR5582, St Martin Dheres, France
[3] SISSA, Trieste, Italy
[4] BCAM, Bilbao, Spain
来源
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009) | 2009年
关键词
geometry of vision; elastica functional; existence of minimizers;
D O I
10.1109/CDC.2009.5399749
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional integral root 1 + K-2 ds, depending both on length and curvature K. We fix starting and ending points as well as initial and final directions. For this functional, we find non-existence of minimizers on various functional spaces in which the problem is naturally formulated. In this case, minimizing sequences of trajectories can converge to curves with angles. We instead prove existence of minimizers for the "time-reparameterized" functional integral parallel to(gamma)over dot(t)parallel to root 1 + K-gamma(2) dt for all boundary conditions if initial and final directions are considered regardless to orientation.
引用
收藏
页码:1062 / 1067
页数:6
相关论文
共 21 条
[1]  
Agrachev A. A., 2004, Control Theory and Optimization, V87
[2]  
[Anonymous], 2002, AM MATH SOC, DOI DOI 10.1090/SURV/091
[3]  
[Anonymous], 2008, Neurogeometrie de la Vision. Modeles mathematiques et physiques des architectures fonctionnelles
[4]  
Bellettini G., 1997, J CONVEX ANAL, V4, P91
[5]  
Bloch A.M., 2003, INTERD APPL, P24
[6]  
Boscain U., CONTROL OPT IN PRESS
[7]   Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces [J].
Boscain, Ugo ;
Rossi, Francesco .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1851-1878
[8]  
Brockett R.W., 1982, NEW DIRECTIONS APPL, P11, DOI DOI 10.1007/978-1-4612-5651-9_2
[9]  
Cao F., GEOMETRICAL IN PRESS
[10]   A cortical based model of perceptual completion in the roto-translation space [J].
Citti, G ;
Sarti, A .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (03) :307-326