LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS

被引:0
作者
Zhang, Shiquan [1 ]
Xie, Xiaoping [1 ,2 ]
Chen, Yumei [1 ,3 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[3] China W Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
关键词
Darcy-Stokes problem; Finite element; Uniformly stable; COMPUTATIONAL FLUID-DYNAMICS; EQUATIONS; FLOW; APPROXIMATION; FORMULATION; MODELS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.
引用
收藏
页码:400 / 424
页数:25
相关论文
共 27 条