LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS

被引:0
作者
Zhang, Shiquan [1 ]
Xie, Xiaoping [1 ,2 ]
Chen, Yumei [1 ,3 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[3] China W Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
关键词
Darcy-Stokes problem; Finite element; Uniformly stable; COMPUTATIONAL FLUID-DYNAMICS; EQUATIONS; FLOW; APPROXIMATION; FORMULATION; MODELS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.
引用
收藏
页码:400 / 424
页数:25
相关论文
共 27 条
[1]  
ANOLD DN, 1984, CALCOLO, V21, P337
[2]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[3]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[4]   Iterative techniques for time dependent Stokes problems [J].
Bramble, JH ;
Pasciak, JE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (1-2) :13-30
[5]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[6]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[7]  
BREZZI F, 1984, EFFICIENT SOLUTION E
[8]  
BURMAN E, 2005, NUMER MATH PART DIFF
[9]   A unified stabilized method for Stokes' and Darcy's equations [J].
Burman, Erik ;
Hansbo, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :35-51
[10]   SOME FAST 3D FINITE-ELEMENT SOLVERS FOR THE GENERALIZED STOKES PROBLEM [J].
CAHOUET, J ;
CHABARD, JP .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1988, 8 (08) :869-895