LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS
被引:0
作者:
Zhang, Shiquan
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Zhang, Shiquan
[1
]
Xie, Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Xie, Xiaoping
[1
,2
]
Chen, Yumei
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
China W Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Chen, Yumei
[1
,3
]
机构:
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Yangtze Ctr Math, Chengdu 610064, Peoples R China
[3] China W Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.