Accurate Evaluation of Polynomials in Legendre Basis

被引:8
作者
Du, Peibing [1 ]
Jiang, Hao [2 ]
Cheng, Lizhi [1 ]
机构
[1] Natl Univ Def Technol, Dept Math & Syst Sci, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp Sci, State Key Lab High Performance Computat, Changsha 410073, Hunan, Peoples R China
关键词
ALGORITHMS;
D O I
10.1155/2014/742538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a compensated algorithm for accurate evaluation of a polynomial in Legendre basis. Since the coefficients of the evaluated polynomial are fractions, we propose to store these coefficients in two floating point numbers, such as double-double format, to reduce the effect of the coefficients' perturbation. The proposed algorithm is obtained by applying error-free transformation to improve the Clenshaw algorithm. It can yield a full working precision accuracy for the ill-conditioned polynomial evaluation. Forward error analysis and numerical experiments illustrate the accuracy and efficiency of the algorithm.
引用
收藏
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1998, SORTING SEARCHING
[2]  
[Anonymous], 2013, APPROXIMATION THEORY
[3]   High-precision computation: Mathematical physics and dynamics [J].
Bailey, D. H. ;
Barrio, R. ;
Borwein, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) :10106-10121
[4]   A unified rounding error bound for polynomial evaluation [J].
Barrio, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (04) :385-399
[5]   Rounding error bounds for the Clenshaw and Forsythe algorithms for the evaluation of orthogonal polynomial series [J].
Barrio, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) :185-204
[6]   A GENERAL CONDITION NUMBER FOR POLYNOMIALS [J].
Barrio, Roberto ;
Jiang, Hao ;
Serrano, Sergio .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :1280-1294
[7]  
Clenshaw CW., 1955, Math Comp, V9, P118, DOI DOI 10.1090/S0025-5718-1955-0071856-0
[8]   FLOATING-POINT TECHNIQUE FOR EXTENDING AVAILABLE PRECISION [J].
DEKKER, TJ .
NUMERISCHE MATHEMATIK, 1971, 18 (03) :224-+
[9]  
Gil R.B., 1998, Extr. Math., V13, P21
[10]  
Gottlieb D., 1977, CBMS NSF REGIONAL C, V26