Quantum machine learning for quantum anomaly detection

被引:87
作者
Liu, Nana [1 ,2 ]
Rebentrost, Patrick [3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Singapore Univ Technol & Design, 8 Somapah Rd, Singapore 487372, Singapore
[3] Xanadu, 372 Richmond St W, Toronto, ON M5V 2L7, Canada
基金
新加坡国家研究基金会;
关键词
SUPPORT; FIDELITY; STATES;
D O I
10.1103/PhysRevA.97.042315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
引用
收藏
页数:10
相关论文
共 45 条
[21]   Kernel PCA for novelty detection [J].
Hoffmann, Heiko .
PATTERN RECOGNITION, 2007, 40 (03) :863-874
[22]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323
[23]  
Lloyd S, 2014, NAT PHYS, V10, P631, DOI [10.1038/nphys3029, 10.1038/NPHYS3029]
[24]  
Ma JS, 2003, IEEE IJCNN, P1741
[25]  
Miszczak JA, 2009, QUANTUM INF COMPUT, V9, P103
[26]   Inductive Supervised Quantum Learning [J].
Monras, Alex ;
Sentis, Gael ;
Wittek, Peter .
PHYSICAL REVIEW LETTERS, 2017, 118 (19)
[27]  
Muandet K., 2013, UAI 13, P449
[28]  
Nielsen MA., 2010, QUANTUM COMPUTATION, DOI 10.1017/cbo9780511976667
[29]   A review of novelty detection [J].
Pimentel, Marco A. F. ;
Clifton, David A. ;
Clifton, Lei ;
Tarassenko, Lionel .
SIGNAL PROCESSING, 2014, 99 :215-249
[30]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)