A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O

被引:5
|
作者
Tu, Yaojie [1 ,2 ]
Yang, Wenming [2 ]
Siah, Keng Boon [3 ]
Prabakaran, Subbaiah [3 ]
机构
[1] Natl Univ Singapore, Sembcorp NUS Corp Lab, Singapore 117576, Singapore
[2] Natl Univ Singapore, Fac Engn, Dept Mech Engn, Singapore 117576, Singapore
[3] Sembcorp Ind Ltd, 30 Hill St,05-04, Singapore 179360, Singapore
来源
INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS | 2019年 / 158卷
基金
新加坡国家研究基金会;
关键词
MILD combustion; oxyfuel combustion; autoignition behavior; flame structure; MIXTURES;
D O I
10.1016/j.egypro.2019.01.352
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Moderate or intense low-oxygen dilution (MILD) combustion is a promising technology for reducing pollutant emissions while maintaining high thermal efficiency. Recently, MILD combustion has been expected to be applied in combination with oxy-fuel combustion for carbon capturing and storage (CCS). This paper presents a numerical study of methane MILD combustion in O-2/N-2, O-2/CO2 and O-2/H2O, in order to deepen the knowledge to the combined form, namely oxy-MILD combustion. Firstly, steady computational fluid dynamics (CFD) simulation was carried out inside a closed lab-scale MILD combustion furnace following the previous experiment conducted in O-2/N-2. Detailed in-furnace temperature and species data as well as laminar flame speed were used to validate the CFD models and the chemical reaction mechanism Subsequently, flame structure and turbulence/reaction interaction were examined under the three atmosphere conditions. The results suggest that oxy-MILD (diluted with either CO2 or H2O) combustion exhibits larger reaction zone and higher likelihood to be operated under distributed reaction regime in comparison with air-MILD (diluted with N-2). Specifically, CO2 is the most preferable diluent among N-2, CO2 and H2O to achieve MILD combustion regime. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1473 / 1478
页数:6
相关论文
共 50 条
  • [1] CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
    Tu, Yaojie
    Xu, Mingchen
    Zhou, Dezhi
    Wang, Qingxiang
    Yang, Wenming
    Liu, Hao
    APPLIED ENERGY, 2019, 240 : 1003 - 1013
  • [2] Numerical Study of MILD Combustion for Pulverized Coal in O2/N2, O2/CO2, and O2/H2O Atmospheres
    Tu, Yaojie
    Kong, Fanhai
    Su, Kai
    Liu, Hao
    Zheng, Chuguang
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 157 - 163
  • [3] Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Zhang, Xiaoyu
    Zhu, Shujun
    Zhu, Jianguo
    Liu, Yuhua
    Zhang, Jiahang
    Hui, Jicheng
    Ding, Hongliang
    Cao, Xiaoyang
    Lyu, Qinggang
    ENERGY, 2023, 274
  • [4] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412
  • [5] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Pan, Fei
    Zhu, Jianguo
    Liu, Jingzhang
    Liu, Yuhua
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (06) : 2235 - 2242
  • [6] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    Fei Pan
    Jianguo Zhu
    Jingzhang Liu
    Yuhua Liu
    Journal of Thermal Science, 2023, 32 : 2235 - 2242
  • [7] Effect of H2O on Preheating Combustion Characteristics in O2/CO2 and O2/N2 Atmospheres
    PAN Fei
    ZHU Jianguo
    LIU Jingzhang
    LIU Yuhua
    Journal of Thermal Science, 2023, 32 (06) : 2235 - 2242
  • [8] Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres
    He, Yizhuo
    Zou, Chun
    Song, Yu
    Luo, Jianghui
    Jia, Huiqiao
    Chen, Wuzhong
    Zheng, Junmei
    Zheng, Chuguang
    ENERGY, 2017, 141 : 1429 - 1438
  • [9] CFD Study on Influence of O2/CO2, O2/H2O Atmospheres and Shape of Furnace on Methane MILD Combustion
    Sepideh Biabani
    Seyed Reza Shabanian
    Hamid Bakhshi
    International Journal of Thermophysics, 2023, 44
  • [10] CFD Study on Influence of O2/CO2, O2/H2O Atmospheres and Shape of Furnace on Methane MILD Combustion
    Biabani, Sepideh
    Shabanian, Seyed Reza
    Bakhshi, Hamid
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2023, 44 (03)