Rayleigh-Benard convection at high Rayleigh number and infinite Prandtl number: Asymptotics and numerics

被引:12
作者
Vynnycky, M. [1 ]
Masuda, Y. [2 ]
机构
[1] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland
[2] Natl Inst Adv Ind Sci & Technol, Res Ctr Compact Chem Proc, Miyagino Ku, Sendai, Miyagi 9838551, Japan
基金
爱尔兰科学基金会;
关键词
THERMAL-CONVECTION; COMMUNITY BENCHMARK; MANTLE CONVECTION; EARTHS MANTLE;
D O I
10.1063/1.4829450
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The problem of fast viscous steady Rayleigh-Benard convection in a rectangular enclosure is revisited using asymptotic and numerical methods. There are two generic cases: in the first, there is zero shear stress at all boundaries; in the second, there is zero shear stress at the vertical boundaries, but no slip at the horizontal ones. For the first case, we reconcile our new numerical solutions to the full equations with earlier asymptotic results for large Rayleigh number and effectively infinite Prandtl number. For the second case, we first derive the corresponding asymptotic theory and then reconcile it also with the relevant full numerical solutions. However, the latter also indicate behavior which the asymptotic theory does not predict, for Rayleigh numbers in excess of just over 10(6) and aspect ratios in excess of around 1.1. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:24
相关论文
共 20 条
[1]   A BENCHMARK COMPARISON FOR MANTLE CONVECTION CODES [J].
BLANKENBACH, B ;
BUSSE, F ;
CHRISTENSEN, U ;
CSEREPES, L ;
GUNKEL, D ;
HANSEN, U ;
HARDER, H ;
JARVIS, G ;
KOCH, M ;
MARQUART, G ;
MOORE, D ;
OLSON, P ;
SCHMELING, H ;
SCHNAUBELT, T .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1989, 98 (01) :23-38
[2]   Large Rayleigh number thermal convection: Heat flux predictions and strongly nonlinear solutions [J].
Chini, Gregory P. ;
Cox, Stephen M. .
PHYSICS OF FLUIDS, 2009, 21 (08)
[3]  
FOWLER A.C., 2011, MATH GEOSCIENCE
[4]   Scaling in thermal convection: a unifying theory [J].
Grossmann, S ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2000, 407 :27-56
[5]   Thermal convection for large Prandtl numbers [J].
Grossmann, S ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3316-3319
[6]   A BOUNDARY-LAYER ANALYSIS OF RAYLEIGH-BENARD CONVECTION AT LARGE RAYLEIGH NUMBER [J].
JIMENEZ, J ;
ZUFIRIA, JA .
JOURNAL OF FLUID MECHANICS, 1987, 178 :53-71
[7]   A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle [J].
King, Scott D. ;
Lee, Changyeol ;
van Keken, Peter E. ;
Leng, Wei ;
Zhong, Shijie ;
Tan, Eh ;
Tosi, Nicola ;
Kameyama, Masanori C. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 180 (01) :73-87
[8]   On topography and geoid from 2-D stagnant lid convection calculations [J].
King, Scott D. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10
[9]   CONMAN - VECTORIZING A FINITE-ELEMENT CODE FOR INCOMPRESSIBLE 2-DIMENSIONAL CONVECTION IN THE EARTHS MANTLE [J].
KING, SD ;
RAEFSKY, A ;
HAGER, BH .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1990, 59 (03) :195-207
[10]   Mantle convection with reversing mobile plates: A benchmark study [J].
Koglin, DE ;
Ghias, SR ;
King, SD ;
Jarvis, GT ;
Lowman, JP .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2005, 6