Biofunctionalized Multiwalled Carbon Nanotube: A Reactive Component for the in Situ Polymerization of Hyperbranched Poly(ester amide) and its Biophysico Interfacial Properties

被引:12
作者
Pramanik, Sujata [1 ]
Barua, Nilakshi [2 ]
Buragohain, Alak K. [2 ]
Hazarika, Jayanta [3 ]
Kumar, Ashok [3 ]
Karak, Niranjan [1 ]
机构
[1] Tezpur Univ, Dept Chem Sci, Tezpur 784028, Assam, India
[2] Tezpur Univ, Dept Mol Biol & Biotechnol, Tezpur 784028, Assam, India
[3] Tezpur Univ, Dept Phys, Mat Res Lab, Tezpur 784028, Assam, India
关键词
MECHANICAL-PROPERTIES; DISPERSION; POLYMERS; SURFACTANTS; ADSORPTION;
D O I
10.1021/jp407944j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile method of ultrasound-assisted noncovalent functionalization of multiwalled carbon nanotubes (MWCNT) with fatty amide of castor oil and use of the same as a reactive component in the in situ polymerization of hyperbranched poly(ester amide) (HBPEA) via an A(2) + B-2 + A'A(2) approach is reported. The reaction entails anchoring of the amide groups to MWCNT to maximize the reaction with the diacids, resulting in formation of the nanocomposite. Fourier transform infrared analyses validated the anchorage of esteramide groups to the nanotubes. Intercalation and formation of dense polymer layers on the isotropically dispersed nanotubes (with mean coherency coefficient of 0.229) were evident from transmission electron microscopy. The changes in biophysico attributes were reflected in their selective efficacy against the Gram-positive bacteria with an enhanced cytotoxicity (death rate increase of Staphylococcus aureus by 137.5% and Bacillus subtilis by 107.6%) and significant decrease in the sheet resistance by 3 orders of magnitude (from 10(7) to 10(4) Omega sq(-1)) Antistatic as compared to the pristine HBPEA at low loading of 1 wt % MWCNT. The multifunctional nanocomposites maintained the acceptable mechanical performance, and kinetics evaluation of activation energy revealed enhanced thermal stability over pristine HBPEA; the nanocomposites can be envisaged for MWCNT-based bionano applications, particularly in the field of advanced textiles.
引用
收藏
页码:25097 / 25107
页数:11
相关论文
共 35 条
[1]   A FORMATION MECHANISM FOR CATALYTICALLY GROWN HELIX-SHAPED GRAPHITE NANOTUBES [J].
AMELINCKX, S ;
ZHANG, XB ;
BERNAERTS, D ;
ZHANG, XF ;
IVANOV, V ;
NAGY, JB .
SCIENCE, 1994, 265 (5172) :635-639
[2]   Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes [J].
Baskaran, D ;
Mays, JW ;
Bratcher, MS .
CHEMISTRY OF MATERIALS, 2005, 17 (13) :3389-3397
[3]   Selective intercalation of polymers in carbon nanotubes [J].
Bazilevsky, Alexander V. ;
Sun, Kexia ;
Yarin, Alexander L. ;
Megaridis, Constantine M. .
LANGMUIR, 2007, 23 (14) :7451-7455
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[6]   Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective [J].
Duan, Wen Hui ;
Wang, Quan ;
Collins, Frank .
CHEMICAL SCIENCE, 2011, 2 (07) :1407-1413
[7]   GENERAL TREATMENT OF THERMOGRAVIMETRY OF POLYMERS [J].
FLYNN, JH ;
WALL, LA .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1966, A 70 (06) :487-+
[8]   Surfactant-assisted processing of carbon nanotube/polymer composites [J].
Gong, XY ;
Liu, J ;
Baskaran, S ;
Voise, RD ;
Young, JS .
CHEMISTRY OF MATERIALS, 2000, 12 (04) :1049-1052
[9]   Single-walled carbon nanotubes exhibit strong antimicrobial activity [J].
Kang, Seoktae ;
Pinault, Mathieu ;
Pfefferle, Lisa D. ;
Elimelech, Menachem .
LANGMUIR, 2007, 23 (17) :8670-8673
[10]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1