On transcendental formal power series over finite fields

被引:0
作者
Kekec, Gulcan [1 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Istanbul, Turkey
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2020年 / 63卷 / 04期
关键词
Bundschuh's classification of transcendental formal power series; over finite fields; U-number; lacunary power series; transcendence measure; ALGEBRAIC COEFFICIENTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a finite field and K(x) be the quotient field of the ring of polynomials in x with coefficients in K. In the field K of formal power series over K, we treat certain lacunary power series with algebraic coefficients in a finite extension of K(x). We show that the values of these series at certain U-1-number arguments are either algebraic over K(x) or U-numbers.
引用
收藏
页码:349 / 357
页数:9
相关论文
共 9 条
[1]  
Alniacik K., 1979, I.stanbul Univ. Fen Fak. Mecm. Ser. A, V44, P39
[2]   ARITHMETIC PROPERTIES OF LACUNARY POWER-SERIES WITH ALGEBRAIC COEFFICIENTS AND ALGEBRAIC ARGUMENT [J].
BRAUNE, E .
MONATSHEFTE FUR MATHEMATIK, 1977, 84 (01) :1-11
[3]  
BUNDSCHUH P, 1978, J REINE ANGEW MATH, V299, P411
[4]   U-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS [J].
Kekec, Gulcan .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) :218-225
[5]  
Kekeç G, 2014, TAIWAN J MATH, V18, P1
[6]  
Mahler K, 1932, J REINE ANGEW MATH, V166, P118
[7]  
Mahler K., 1965, J. Aust.Math. Soc, V5, P56
[8]  
Oryan M. H., 1980, ISTANBUL U FEN FAK A, V45, P43
[9]  
ZEREN BM, 1980, ISTANBUL U FEN FAK A, V45, P89