An LMI-based controller synthesis for periodic trajectories in a class of nonlinear systems

被引:6
作者
Basso, M [1 ]
Genesio, R [1 ]
Tesi, A [1 ]
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
关键词
circle criterion; forced nonlinear systems; linear controller synthesis; linear matrix inequalities (LMIs); periodic dynamics;
D O I
10.1109/TAC.2002.803550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of finite-dimensional linear time-invariant controllers for the stabilization of periodic solutions in sinusoidally forced nonlinear systems is investigated. By mixing results concerning absolute stability of nonlinear systems and robustness of linear systems, a linear matrix inequality-based controller synthesis technique is developed. The synthesis algorithm yields the controller maximizing a lower bound of the maximum amplitude of the forcing input, for which the corresponding periodic solutions are guaranteed to be stable. The Duffing oscillator is employed to illustrate the main features of the proposed synthesis technique.
引用
收藏
页码:1740 / 1744
页数:5
相关论文
共 15 条
  • [1] Dynamical analysis and control of microcantilevers
    Ashhab, M
    Salapaka, MV
    Dahleh, M
    Mezic, I
    [J]. AUTOMATICA, 1999, 35 (10) : 1663 - 1670
  • [2] Stabilizing periodic orbits of forced systems via generalized Pyragas controllers
    Basso, M
    Genesio, R
    Tesi, A
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10): : 1023 - 1027
  • [3] On optimal stabilization of periodic orbits via time delayed feedback control
    Basso, M
    Genesio, R
    Giovanardi, L
    Tesi, A
    Torrini, G
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (08): : 1699 - 1706
  • [4] Basso M, 2002, LECT NOTES CONTR INF, V273, P145
  • [5] Basso M, 2000, ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II, P381, DOI 10.1109/ISCAS.2000.856341
  • [6] Boyd S., 1991, LINEAR CONTROLLER DE
  • [7] Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
  • [8] Chen G., 1999, CONTROLLING CHAOS BI
  • [9] On time-delayed feedback control of chaotic systems
    Chen, GR
    Yu, XH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 767 - 772
  • [10] Jönsson UT, 2000, P AMER CONTR CONF, P1307, DOI 10.1109/ACC.2000.876712