Symmetry via antisymmetric maximum principles in nonlocal problems of variable order

被引:86
作者
Jarohs, Sven [1 ]
Weth, Tobias [1 ]
机构
[1] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany
关键词
Nonlocal operators; Maximum principles; Symmetries; FRACTIONAL LAPLACIAN; OPERATORS; EQUATIONS; REGULARITY;
D O I
10.1007/s10231-014-0462-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear problem (P) {Iu = f(x, u) in Omega, u = 0 on R-N backslash Omega in an open bounded set Omega subset of R-N, where I is a nonlocal operator, which may be anisotropic and may have varying order. We assume mild symmetry and monotonicity assumptions on I, Omega and the nonlinearity f with respect to a fixed direction, say x(1), and we show that any nonnegative weak solution u of (P) is symmetric in x(1). Moreover, we have the following alternative: Either u 0 in Omega, or u is strictly decreasing in vertical bar x(1)vertical bar . The proof relies on new maximum principles for antisymmetric supersolutions of an associated class of linear problems.
引用
收藏
页码:273 / 291
页数:19
相关论文
共 25 条
[1]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[3]  
Barrios B., ARXIV14055402
[4]   Harnack inequalities for non-local operators of variable order [J].
Bass, RF ;
Kassmann, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :837-850
[5]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[6]   Comparison results and steady states for the Fujita equation with fractional Laplacian [J].
Birkner, M ;
López-Mimbela, JA ;
Wakolbinger, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :83-97
[7]  
Bogdan K., 2000, Probab. Math. Statist., V20, P293
[8]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]  
Chen W., ARXIV13097499V1