Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

被引:376
作者
Fu, Yu [1 ]
Jung, Alexander W. [1 ]
Torne, Ramon Vinas [1 ,6 ]
Gonzalez, Santiago [1 ,7 ]
Vohringer, Harald [1 ]
Shmatko, Artem [1 ,2 ]
Yates, Lucy R. [3 ]
Jimenez-Linan, Mercedes [4 ]
Moore, Luiza [3 ,4 ]
Gerstung, Moritz [1 ,5 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Wellcome Sanger Inst, Canc Ageing & Somat Mutat, Hinxton, England
[4] Addenbrookes Hosp, Dept Pathol, Cambridge, England
[5] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[6] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
[7] Inst Res Biomed IRB Barcelona, Barcelona, Spain
基金
英国惠康基金;
关键词
INFILTRATING LYMPHOCYTES; REGULARIZATION PATHS; MOLECULAR SUBTYPES; EGFR; HETEROGENEITY; ARCHITECTURE; EXPRESSION; LANDSCAPE; SELECTION; PATTERNS;
D O I
10.1038/s43018-020-0085-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We use deep transfer learning to quantify histopathological patterns across 17,355 hematoxylin and eosin-stained histopathology slide images from 28 cancer types and correlate these with matched genomic, transcriptomic and survival data. This approach accurately classifies cancer types and provides spatially resolved tumor and normal tissue distinction. Automatically learned computational histopathological features correlate with a large range of recurrent genetic aberrations across cancer types. This includes whole-genome duplications, which display universal features across cancer types, individual chromosomal aneuploidies, focal amplifications and deletions, as well as driver gene mutations. There are widespread associations between bulk gene expression levels and histopathology, which reflect tumor composition and enable the localization of transcriptomically defined tumor-infiltrating lymphocytes. Computational histopathology augments prognosis based on histopathological subtyping and grading, and highlights prognostically relevant areas such as necrosis or lymphocytic aggregates. These findings show the remarkable potential of computer vision in characterizing the molecular basis of tumor histopathology. Two papers by Kather and colleagues and Gerstung and colleagues develop workflows to predict a wide range of molecular alterations from pan-cancer digital pathology slides.
引用
收藏
页码:800 / +
页数:23
相关论文
共 69 条
[1]   Genomic analyses identify molecular subtypes of pancreatic cancer [J].
Bailey, Peter ;
Chang, David K. ;
Nones, Katia ;
Johns, Amber L. ;
Patch, Ann-Marie ;
Gingras, Marie-Claude ;
Miller, David K. ;
Christ, Angelika N. ;
Bruxner, Tim J. C. ;
Quinn, Michael C. ;
Nourse, Craig ;
Murtaugh, L. Charles ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Manning, Suzanne ;
Nourbakhsh, Ehsan ;
Wani, Shivangi ;
Fink, Lynn ;
Holmes, Oliver ;
Chin, Vencssa ;
Anderson, Matthew J. ;
Kazakoff, Stephen ;
Leonard, Conrad ;
Newell, Felicity ;
Waddell, Nick ;
Wood, Scott ;
Xu, Qinying ;
Wilson, Peter J. ;
Cloonan, Nicole ;
Kassahn, Karin S. ;
Taylor, Darrin ;
Quek, Kelly ;
Robertson, Alan ;
Pantano, Lorena ;
Mincarelli, Laura ;
Sanchez, Luis N. ;
Evers, Lisa ;
Wu, Jianmin ;
Pinese, Mark ;
Cowley, Mark J. ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chantrill, Lorraine A. ;
Mawson, Amanda ;
Humphris, Jeremy ;
Chou, Angela ;
Pajic, Marina ;
Scarlett, Christopher J. .
NATURE, 2016, 531 (7592) :47-+
[2]  
Bayraktar O. A., 2018, SINGLE CELL IN SITU, DOI [10.1101/432104, DOI 10.1101/432104]
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[5]  
Best D. J., 1975, Applied Statistics, V24, P377, DOI 10.2307/2347111
[6]   Small cell architecture - A histological equivalent of EGFR amplification in glioblastoma multiforme? [J].
Burger, PC ;
Pearl, DK ;
Aldape, K ;
Yates, AJ ;
Scheithauer, BW ;
Passe, SM ;
Jenkins, RB ;
James, CD .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2001, 60 (11) :1099-1104
[7]   Tertiary lymphoid structures improve immunotherapy and survival in melanoma [J].
Cabrita, Rita ;
Lauss, Martin ;
Sanna, Adriana ;
Donia, Marco ;
Larsen, Mathilde Skaarup ;
Mitra, Shamik ;
Johansson, Iva ;
Phung, Bengt ;
Harbst, Katja ;
Vallon-Christersson, Johan ;
van Schoiack, Alison ;
Loevgren, Kristina ;
Warren, Sarah ;
Jirstroem, Karin ;
Olsson, Hakan ;
Pietras, Kristian ;
Ingvar, Christian ;
Isaksson, Karolin ;
Schadendorf, Dirk ;
Schmidt, Henrik ;
Bastholt, Lars ;
Carneiro, Ana ;
Wargo, Jennifer A. ;
Svane, Inge Marie ;
Jonsson, Goran .
NATURE, 2020, 577 (7791) :561-+
[8]   Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl [J].
Caicedo, Juan C. ;
Goodman, Allen ;
Karhohs, Kyle W. ;
Cimini, Beth A. ;
Ackerman, Jeanelle ;
Haghighi, Marzieh ;
Heng, CherKeng ;
Becker, Tim ;
Minh Doan ;
McQuin, Claire ;
Rohban, Mohammad ;
Singh, Shantanu ;
Carpenter, Anne E. .
NATURE METHODS, 2019, 16 (12) :1247-+
[9]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[10]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)