The neuropeptide vasoactive intestinal peptide (VIP) is anti-inflammatory and protective in the immune and nervous systems, respectively. This study demonstrated in corneal endothelial (CE) cells injured by severe oxidative stress (1.4 mM H2O2) in bovine corneal organ cultures that VIP pre-treatment (0, 10(-10), 10(-8), and 10(-6) M; 15 min), in a VIP concentration-dependent manner, switched the inflammation-causing necrosis to inflammation-neutral apoptosis (showing annexin V-binding, chromatin condensation, and DNA fragmentation) and upheld ATP levels in a VIP antagonist (SN)VIPhyb-sensitive manner, while up-regulated mRNA levels of the anti-apoptotic Bcl-2 and the differentiation marker N-cadherin in a kinase A inhibitor-sensitive manner. As a result, VIP, in a concentration-dependent and VIP antagonist-sensitive manners, promoted long-term CE cell survival. ATP levels, a determining factor in the choice of apoptosis versus necrosis, measured after VIP pre-treatment and 0.5 min post-H2O2 were 39.6 +/- 3.3, 50.8 +/- 6.2, 60.1 +/- 4.8, and 53.6 +/- 5.3 pmoles/mu g protein (mean +/- SEM), respectively (p < 0.05, anova). VIP treatment alone concentration-dependently increased levels of N-cadherin (Koh et al. 2008), the phosphorylated cAMP-responsive-element binding protein and Bcl-2, while10(-8) M VIP, in a VIP antagonist (SN)VIPhyb-sensitive manner, increased ATP level by 38% (p < 0.02) and decreased glycogen level by 32% (p < 0.02). VPAC1 (not VPAC2) receptor was expressed in CE cells. Thus, CE cell VIP/VPAC1 signaling is both anti-inflammatory and protective in the corneal endothelium.