The strong approximation conjecture holds for amenable groups

被引:18
作者
Elek, Gabor [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Math Inst, H-1364 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
von Neumann dimension; amenable groups; the approximation conjecture;
D O I
10.1016/j.jfa.2005.12.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finitely generated group and G (sic) G(1) (sic) G(2) (sic)... be normal subgroups such that boolean AND(infinity)(k=1) G(k) = {1}. Let A is an element of Mat(dxd)(CG) and A(k) is an element of Mat(dxd)(C(G/G(k))) be the images of A under the maps induced by the epimorphisms G --> G/G(k). According to the strong form of the Approximation Conjecture of Luck [W. Luck, L-2-Invariants: Theory and Applications to Geometry and K-theory, Ergeb. Math. Grenzgeb. (3), vol. 44, Springer-Verlag, Berlin, 2002] dim(G)(ker A)= lim(k-->infinity) dim(G/Gk)(ker A(k)), where dim(G) denotes the von Neumann dimension. In [J. Dodziuk, P. Linnell, V. Mathai, T Schick, S. Yates, Approximating L-2-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (7) (2003) 839-873] Dodziuk et al. proved the conjecture for torsion free elementary amenable groups. In this paper we extend their result for all amenable groups, using the quasi-tilings of Ornstein and Weiss [D.S. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987) 1-141]. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 6 条
[1]  
[Anonymous], 2002, ERGEB MATH GRENZGEB
[2]  
Benjamini I., 2001, ELECT J PROBAB, V6
[3]   Approximating L2-invariants and the Atiyah conjecture [J].
Dodziuk, J ;
Linnell, P ;
Mathai, V ;
Schick, T ;
Yates, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (07) :839-873
[4]   On the analytic zero divisor conjecture of Linnell [J].
Elek, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :236-238
[5]   APPROXIMATING L(2)-INVARIANTS BY THEIR FINITE-DIMENSIONAL ANALOGS [J].
LUCK, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (04) :455-481
[6]   ENTROPY AND ISOMORPHISM THEOREMS FOR ACTIONS OF AMENABLE-GROUPS [J].
ORNSTEIN, DS ;
WEISS, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 48 :1-142