Analysis of a thermo-viscoplastic model with Lipschitz continuous constitutive equations

被引:7
作者
Bartczak, Leszek [1 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
关键词
continuum mechanics; visco-plasticity; heat conduction; thermomechanics in visco-plasticity; BODNER-PARTOM;
D O I
10.1002/mma.2999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a thermo-mechanical model, where the mechanical inelastic model with a Lipschitz-continuous constitutive relation for the plastic strain is coupled with a heat equation. The main results are the local-in-time existence and uniqueness of the solution to the considered model and the existence of the solution for an arbitrarily long time interval for the sufficiently small given data. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:2597 / 2614
页数:18
相关论文
共 13 条
[1]   A GENERAL CHAIN RULE FOR DISTRIBUTIONAL DERIVATIVES [J].
AMBROSIO, L ;
DALMASO, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :691-702
[2]  
[Anonymous], MONOGRAPHS SURVEYS P
[3]  
[Anonymous], LINEAR QUASILINEAR E
[4]  
Bartczak L, 2013, TOPOL METHOD NONL AN, V41, P67
[6]   THERMO-VISCO-ELASTICITY WITH RATE-INDEPENDENT PLASTICITY IN ISOTROPIC MATERIALS UNDERGOING THERMAL EXPANSION [J].
Bartels, Soeren ;
Roubicek, Tomas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03) :477-504
[7]  
Chelminski K, 2006, J APPL ANAL, V12, P37
[8]  
Chelminski K, 2000, MATH NACHR, V214, P5
[9]  
Chelmiriski K., 2008, ADV MATH SCI APPL, V18, P119
[10]   Solvability for a class of generalized standard materials with thermomechanical coupling [J].
Paoli, Laetitia ;
Petrov, Adrien .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :111-130