NUMERICAL SOLUTION OF A CLASS OF ADVECTION-REACTION-DIFFUSION SYSTEM

被引:2
|
作者
Cao, Li [1 ,3 ]
Ma, Zhanxin [2 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Univ, Sch Econ & Management, Hohhot, Inner Mongolia, Peoples R China
[3] Inner Mongolia Med Univ, Coll Comp & Informat, Hohhot, Inner Mongolia, Peoples R China
来源
THERMAL SCIENCE | 2019年 / 23卷 / 03期
关键词
non-linear advection-reaction-diffusion problems; numerical experiment; barycentric interpolation collocation method;
D O I
10.2298/TSCI180803217C
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, the barycentric interpolation collocation methods is proposed for solving a class of non-linear advection-reaction-diffusion system. Compared with other methods, the numerical experiment shows the barycentric interpolation collocation method is a high precision method to solve the advection- reaction-dffusion system.
引用
收藏
页码:1503 / 1511
页数:9
相关论文
共 50 条
  • [1] NUMERICAL SOLUTION OF FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATION
    Das, Subir
    Singh, Anup
    Ong, Seng Huat
    THERMAL SCIENCE, 2018, 22 : S309 - S316
  • [2] Numerical solution of the advection-reaction-diffusion equation at different scales
    Rubio, A. D.
    Zalts, A.
    El Hasi, C. D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (01) : 90 - 95
  • [3] Equivalence Transformations for a Class of Advection-Reaction-Diffusion Systems
    Tracina, Rita
    Torrisi, Mariano
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [4] Iterative solution for nonlinear impulsive advection-reaction-diffusion equations
    Hao, Xinan
    Liu, Lishan
    Wu, Yonghong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4070 - 4077
  • [5] Novel numerical analysis for nonlinear advection-reaction-diffusion systems
    Shahid, Naveed
    Ahmed, Nauman
    Baleanu, Dumitru
    Alshomrani, Ali Saleh
    Iqbal, Muhammad Sajid
    Rehman, Muhammad Aziz-ur
    Shaikh, Tahira Sumbal
    Malik, Muhammad Rafiq
    OPEN PHYSICS, 2020, 18 (01): : 112 - 125
  • [6] Bilinear Optimal Control of an Advection-Reaction-Diffusion System
    Glowinski, Roland
    Song, Yongcun
    Yuan, Xiaoming
    Yue, Hangrui
    SIAM REVIEW, 2022, 64 (02) : 392 - 421
  • [7] Spiral defect chaos in an advection-reaction-diffusion system
    Affan, H.
    Friedrich, R.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [8] Experimental studies of coherent structures in an advection-reaction-diffusion system
    Gowen, Savannah
    Solomon, Tom
    CHAOS, 2015, 25 (08)
  • [9] Front tracking for quantifying advection-reaction-diffusion
    Nevins, Thomas D.
    Kelley, Douglas H.
    CHAOS, 2017, 27 (04)
  • [10] Optimal Stretching in Advection-Reaction-Diffusion Systems
    Nevins, Thomas D.
    Kelley, Douglas H.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)