Solution of the explosive percolation quest: Scaling functions and critical exponents

被引:25
作者
da Costa, R. A. [1 ]
Dorogovtsev, S. N. [1 ,2 ]
Goltsev, A. V. [1 ,2 ]
Mendes, J. F. F. [1 ]
机构
[1] Univ Aveiro, Dept Fis, I3N, P-3810193 Aveiro, Portugal
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
关键词
NETWORKS; SYSTEMS; CLUSTER; MODELS;
D O I
10.1103/PhysRevE.90.022145
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Percolation refers to the emergence of a giant connected cluster in a disordered system when the number of connections between nodes exceeds a critical value. The percolation phase transitions were believed to be continuous until recently when, in a new so-called "explosive percolation" problem for a competition-driven process, a discontinuous phase transition was reported. The analysis of evolution equations for this process showed, however, that this transition is actually continuous, though with surprisingly tiny critical exponents. For a wide class of representative models, we develop a strict scaling theory of this exotic transition which provides the full set of scaling functions and critical exponents. This theory indicates the relevant order parameter and susceptibility for the problem and explains the continuous nature of this transition and its unusual properties.
引用
收藏
页数:13
相关论文
共 39 条
  • [1] Explosive Percolation in Random Networks
    Achlioptas, Dimitris
    D'Souza, Raissa M.
    Spencer, Joel
    [J]. SCIENCE, 2009, 323 (5920) : 1453 - 1555
  • [2] [Anonymous], 2010, Lectures on Complex Networks
  • [3] [Anonymous], 2010, A Kinetic View of Statistical Physics
  • [4] Explosive Percolation via Control of the Largest Cluster
    Araujo, N. A. M.
    Herrmann, H. J.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (03)
  • [5] Tricritical Point in Explosive Percolation
    Araujo, Nuno A. M.
    Andrade, Jose S., Jr.
    Ziff, Robert M.
    Herrmann, Hans J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (09)
  • [6] Unstable supercritical discontinuous percolation transitions
    Chen, Wei
    Cheng, Xueqi
    Zheng, Zhiming
    Chung, Ning Ning
    D'Souza, Raissa M.
    Nagler, Jan
    [J]. PHYSICAL REVIEW E, 2013, 88 (04)
  • [7] Phase transitions in supercritical explosive percolation
    Chen, Wei
    Nagler, Jan
    Cheng, Xueqi
    Jin, Xiaolong
    Shen, Huawei
    Zheng, Zhiming
    D'Souza, Raissa M.
    [J]. PHYSICAL REVIEW E, 2013, 87 (05):
  • [8] Explosive Percolation with Multiple Giant Components
    Chen, Wei
    D'Souza, Raissa M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (11)
  • [9] Avoiding a Spanning Cluster in Percolation Models
    Cho, Y. S.
    Hwang, S.
    Herrmann, H. J.
    Kahng, B.
    [J]. SCIENCE, 2013, 339 (6124) : 1185 - 1187
  • [10] Finite-size scaling theory for explosive percolation transitions
    Cho, Y. S.
    Kim, S. -W.
    Noh, J. D.
    Kahng, B.
    Kim, D.
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):