Synthesis of LiMn2O4 with Outstanding Lithium-Insertion Kinetics and Long-Term Stability

被引:8
作者
Laszczynski, Nina [3 ,4 ]
von Zamory, Jan [3 ,4 ]
Loeffler, Nicholas [3 ,4 ]
Cho, Gyu Bong [5 ]
Kim, Guk-Tae [3 ,4 ]
Passerini, Stefano [1 ,2 ,3 ,4 ]
机构
[1] Helmholtz Inst Ulm, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[3] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[4] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany
[5] Gyeongsang Natl Univ, Res Inst Green Energy Convergence Technol, Sch Mat Sci & Engn, Jinju 660701, Gyeongnam, South Korea
来源
CHEMELECTROCHEM | 2014年 / 1卷 / 09期
关键词
calcination temperature; electrochemistry; high power performance; LiMn2O4; spinel phases; ION BATTERIES; ELECTROCHEMICAL PROPERTIES; 3.3; V; SPINEL; ELECTRODES; LI1+XMN2-XO4; CATHODE;
D O I
10.1002/celc.201402057
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A simple route for the synthesis of LiMn2O4 (LMO) at low calcination temperatures is proposed. The calcination temperature is known to influence the structure and surface morphology of LMO; therefore, materials synthesized at different temperatures are characterized by using different techniques. A correlation between the calcination temperature and the structure and surface morphology of the material is shown. The synthesis route described here works at low calcination temperatures (650 degrees C), which leads to LMO that has an excellent rate performance (110 mAh g(-1)) at a charge/discharge rate of 100 C, and avoids cation mixing, manganese dissolution, and Jahn-Teller distortion. The obtained morphology of octahedrons showing primarily (111) planes, ensures excellent electrochemical performance and stability.
引用
收藏
页码:1537 / 1542
页数:6
相关论文
共 26 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources
    Bao, Shu-Juan
    Li, Chang-Ming
    Li, Hu-Lin
    Luong, John H. T.
    [J]. JOURNAL OF POWER SOURCES, 2007, 164 (02) : 885 - 889
  • [3] Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles
    Benedek, R.
    Thackeray, M. M.
    Low, J.
    Bucko, Tomas
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (06) : 4050 - 4059
  • [4] Onset mechanism of Jahn-Teller distortion in 4 v LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M = Co, Ni) coating
    Chung, KY
    Ryu, CW
    Kim, KB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) : A791 - A795
  • [5] TEM studies:: The key for understanding the origin of the 3.3 V and 4.5 V steps observed in LiMn2O4-based spinels
    Dupont, L
    Hervieu, M
    Rousse, G
    Masquelier, C
    Palacín, MR
    Chabre, Y
    Tarascon, JM
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2000, 155 (02) : 394 - 408
  • [6] Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications
    Gao, Y
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 100 - 114
  • [7] Correlation between the growth of the 3.3 V discharge plateau and capacity fading in Li1+xMn2-xO4 materials
    Gao, Y
    Dahn, JR
    [J]. SOLID STATE IONICS, 1996, 84 (1-2) : 33 - 40
  • [8] Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction
    Hirayama, Masaaki
    Ido, Hedekazu
    Kim, KyungSu
    Cho, Woosuk
    Tamura, Kazuhisa
    Mizuki, Jun'ichiro
    Kanno, Ryoji
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (43) : 15268 - 15276
  • [9] Crystallographic facetting in solid-state reacted LiMn2O4 spinel powder
    Huang, MR
    Lin, CW
    Lu, HY
    [J]. APPLIED SURFACE SCIENCE, 2001, 177 (1-2) : 103 - 113
  • [10] Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations
    Karim, Altaf
    Fosse, Sonia
    Persson, Kristin A.
    [J]. PHYSICAL REVIEW B, 2013, 87 (07)