Day-Ahead Hourly Forecasting of Power Generation From Photovoltaic Plants

被引:173
作者
Gigoni, Lorenzo [1 ]
Betti, Alessandro [1 ]
Crisostomi, Emanuele [2 ]
Franco, Alessandro [2 ]
Tucci, Mauro [2 ]
Bizzarri, Fabrizio [3 ]
Mucci, Debora [4 ]
机构
[1] IEM Srl, I-57121 Livorno, Italy
[2] Univ Pisa, Dept Energy Syst Terr & Construct Engn, I-56122 Pisa, Italy
[3] Enel Green Power SpA, I-00198 Rome, Italy
[4] Enel Green Power SpA, Renewable Energy Management, I-00198 Rome, Italy
关键词
PV plants; machine learning algorithms; power generation forecasts; ENSEMBLE; OUTPUT; TERM; PREDICTION; MODEL;
D O I
10.1109/TSTE.2017.2762435
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ability to accurately forecast power generation from renewable sources is nowadays recognized as a fundamental skill to improve the operation of power systems. Despite the general interest of the power community in this topic, it is not always simple to compare different forecasting methodologies, and infer the impact of single components in providing accurate predictions. In this paper, we extensively compare simple forecasting methodologies with more sophisticated ones over 32 photovoltaic (PV) plants of different sizes and technology over a whole year. Also, we try to evaluate the impact of weather conditions and weather forecasts on the prediction of PV power generation.
引用
收藏
页码:831 / 842
页数:12
相关论文
共 35 条
[1]   An analog ensemble for short-term probabilistic solar power forecast [J].
Alessandrini, S. ;
Delle Monache, L. ;
Sperati, S. ;
Cervone, G. .
APPLIED ENERGY, 2015, 157 :95-110
[2]  
[Anonymous], NEURAL COMPUTING APP
[3]  
[Anonymous], 2013, IEEE PES ISGT EUROPE
[4]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[5]   Model of Photovoltaic Power Plants for Performance Analysis and Production Forecast [J].
Bizzarri, Federico ;
Bongiorno, Magda ;
Brambilla, Angelo ;
Gruosso, Giambattista ;
Gajani, Giancarlo Storti .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (02) :278-285
[6]  
Bowman A.W., 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, V18
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]   Photovoltaic power forecasting using statistical methods: impact of weather data [J].
De Giorgi, Maria Grazia ;
Congedo, Paolo Maria ;
Malvoni, Maria .
IET SCIENCE MEASUREMENT & TECHNOLOGY, 2014, 8 (03) :90-97
[10]  
Dows R., 1995, DOEAL8299321