Prescribed matchings extend to Hamiltonian cycles in hypercubes with faulty edges

被引:6
作者
Wang, Fan [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Hypercube; Hamiltonian cycle; Matching; Edge fault-tolerance; GRAY CODES; BIPANCYCLICITY; GRAPHS;
D O I
10.1016/j.disc.2013.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ruskey and Savage asked the following question: for n >= 2, does every matching in Q(n) extend to a Hamiltonian cycle in Q(n)? Fink showed that the answer is yes for every perfect matching, thereby proving Kreweras' conjecture. In this paper we consider the question in hypercubes with faulty edges. We show for n >= 2 that every matching M of at most 2n - 1 edges extends to a Hamiltonian cycle in Q(n). Moreover, we prove that when n >= 4 and M is nonempty this conclusion still holds even if Q(n) has at most n - 1 - inverted right perpendicular vertical bar M vertical bar/2inverted left perpendicular faulty edges, with one exception. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 17 条
[1]  
[Anonymous], CAS PEST MAT
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]  
Dimitrov D, 2009, DISCRETE MATH THEOR, V11, P123
[4]   Hamiltonian cycles with prescribed edges in hypercubes [J].
Dvorák, T .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (01) :135-144
[5]  
DVORAK T, 2007, ELECT NOTES DISCRETE, V29, P471
[6]   Perfect matchings extend to Hamilton cycles in hypercubes [J].
Fink, Jiri .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) :1074-1076
[7]   Matching graphs of hypercubes and complete bipartite graphs [J].
Fink, Jiri .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) :1624-1629
[8]   A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS [J].
HARARY, F ;
HAYES, JP ;
WU, HJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (04) :277-289
[9]  
Kreweras G., 1996, B I COMBIN APPL, V16, P87
[10]  
Leighton F.T., 1992, Introduction to Parallel Algorithms and Architechtures: Arrays, Trees, Hypercubes