High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure

被引:47
作者
Huang, Chaowen [1 ,2 ]
Zhao, Yongqing [1 ,2 ]
Xin, Shewei [1 ,2 ]
Tan, Changsheng [3 ]
Zhou, Wei [1 ,2 ]
Li, Qian [1 ,2 ]
Zeng, Weidong
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Northwest Inst Nonferrous Met Res, Xian 710016, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2017年 / 682卷
基金
中国国家自然科学基金;
关键词
Ti-55531 titanium alloy; Microstructure; High-cycle fatigue; Crack initiation; Crack propagation; BETA TI ALLOY; CRYSTALLOGRAPHIC ORIENTATION; TENSILE DEFORMATION; FRACTURE-TOUGHNESS; CRACK INITIATION; ALPHA; PHASE; BOUNDARIES; FACETS; GROWTH;
D O I
10.1016/j.msea.2016.11.014
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-cycle fatigue (HCF) damage behavior of Ti-5A1-5Mo-5V-3Cr-1Zr (Ti-55531) titanium alloy with lamellar microstructure (LM) was systematically investigated at room temperature. Results indicate that both grain boundary (GB) a phase and small scale (similar to 10 mu m) heterogeneous microstructure regions (SHMRs) in prior beta grains are weak microstructures in LM. Microcracks nucleate at prior beta GBs caused by fracturing of some GB alpha during HCF loading. Dislocations nucleate and annihilate at alpha/beta interfaces, which promote strain concentration and microcracks initiation at alpha/beta interfaces in SHMRs. A combination of slip and twinning predominate cyclic deformation in alpha lamellae, which leads to nucleation of microcracks at a lamellae in SHMRs. Small cracks grow along alpha/beta interfaces or transfer across a lamellae, and then form relatively long cracks in 13 grain interiors. Such crack initiation and propagation behaviors promote the HCF fracture of the alloy.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 47 条
[1]   The effect of ageing on microstructure and mechanical properties of powder Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J].
Ahmed, Mansur ;
Savvakin, Dmytro G. ;
Ivasishin, Orest M. ;
Pereloma, Elena V. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 605 :89-97
[2]   On variant distribution and coarsening behavior of the a phase in a metastable β titanium alloy [J].
Balachandran, Shanoob ;
Kashiwar, Ankush ;
Choudhury, Abhik ;
Banerjee, Dipankar ;
Shi, Rongpei ;
Wang, Yunzhi .
ACTA MATERIALIA, 2016, 106 :374-387
[3]   Static and fatigue characterization of the Ti5553 titanium alloy [J].
Bettaieb, M. B. ;
Lenain, A. ;
Habraken, A. M. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2013, 36 (05) :401-415
[4]   3-D observations of short fatigue crack interaction with lamellar and duplex microstructures in a two-phase titanium alloy [J].
Birosca, S. ;
Buffiere, J. Y. ;
Karadge, M. ;
Preuss, M. .
ACTA MATERIALIA, 2011, 59 (04) :1510-1522
[5]   Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction [J].
Birosca, S. ;
Buffiere, J. Y. ;
Garcia-Pastor, F. A. ;
Karadge, M. ;
Babout, L. ;
Preuss, M. .
ACTA MATERIALIA, 2009, 57 (19) :5834-5847
[6]   The Use of β Titanium Alloys in the Aerospace Industry [J].
Boyer, R. R. ;
Briggs, R. D. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2013, 22 (10) :2916-2920
[7]   A detailed study of the relationship between fatigue crack growth rate and striation spacing in a range of low alloy ferritic steels [J].
Bulloch, J. H. ;
Callagy, A. G. .
ENGINEERING FAILURE ANALYSIS, 2010, 17 (01) :168-176
[8]  
Chakraborty P., 2013, ADV MAT MODEL STRUCT
[9]   DEFORMATION OF AN ALLOY WITH A LAMELLAR MICROSTRUCTURE - EXPERIMENTAL BEHAVIOR OF INDIVIDUAL WIDMANSTATTEN COLONIES OF AN ALPHA-BETA TITANIUM-ALLOY [J].
CHAN, KS ;
WOJCIK, CC ;
KOSS, DA .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (11) :1899-1907
[10]  
Committee A.I.H., 1996, ASM HDB