Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal

被引:17
作者
Sousa, J. F. [1 ,2 ]
Fragoso, M. [3 ]
Mendes, S. [4 ,5 ]
Corte-Real, J. [4 ]
Santos, J. A. [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Ctr Res & Technol Agroenvironm & Biol Sci, Dept Phys, Vila Real, Portugal
[2] Inst Portugues Mar & Atmosfera, Lisbon, Portugal
[3] Univ Lisbon, Inst Geog & Spatial Planning, Ctr Geog Studies, P-1699 Lisbon, Portugal
[4] Univ Evora, Grp Water Soil & Climate, Inst Mediterranean Agrarian & Environm Sci ICAAM, Evora, Portugal
[5] Univ Bergen, Inst Geophys, Bergen, Norway
关键词
Cloud-to-ground discharge; Statistical-dynamical modeling; Lightning regime; Logistic modeling; Lightning forecasting; Portugal; THUNDERSTORMS; FORECAST; PRECIPITATION; PROTECTION; PATTERNS; LAND; LEON; AREA;
D O I
10.1016/j.atmosres.2013.04.010
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003-2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical-dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical-dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65-70% of efficiency). The difference of the equivalent potential temperature in the 700-500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 62 条
[31]   Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes [J].
Morrison, H. ;
Thompson, G. ;
Tatarskii, V. .
MONTHLY WEATHER REVIEW, 2009, 137 (03) :991-1007
[32]   The JRA-25 reanalysis [J].
Onogi, Kazutoshi ;
Tslttsui, Junichi ;
Koide, Hiroshi ;
Sakamoto, Masami ;
Kobayashi, Shinya ;
Hatsushika, Hiroaki ;
Matsumoto, Takanori ;
Yamazaki, Nobuo ;
Kaalhori, Hirotaka ;
Takahashi, Kiyotoshi ;
Kadokura, Shinji ;
Wada, Koji ;
Kato, Koji ;
Oyama, Ryo ;
Ose, Tomoaki ;
Mannoji, Nobutaka ;
Taira, Ryusuke .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2007, 85 (03) :369-432
[33]   Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting [J].
Peterson, D. ;
Wang, J. ;
Ichoku, C. ;
Remer, L. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (14) :6873-6888
[34]   Cloud to ground lightning activity over Portugal and its association with circulation weather types [J].
Ramos, Alexandre M. ;
Ramos, Ricardo ;
Sousa, Pedro ;
Trigo, Ricardo M. ;
Janeira, Marta ;
Prior, Victor .
ATMOSPHERIC RESEARCH, 2011, 101 (1-2) :84-101
[35]  
Ramos R., 2007, 2 INT S LIGHTN PHYS
[36]   Industrial accidents triggered by lightning [J].
Renni, Elisabetta ;
Krausmann, Elisabeth ;
Cozzani, Valerio .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 184 (1-3) :42-48
[37]   MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications [J].
Rienecker, Michele M. ;
Suarez, Max J. ;
Gelaro, Ronald ;
Todling, Ricardo ;
Bacmeister, Julio ;
Liu, Emily ;
Bosilovich, Michael G. ;
Schubert, Siegfried D. ;
Takacs, Lawrence ;
Kim, Gi-Kong ;
Bloom, Stephen ;
Chen, Junye ;
Collins, Douglas ;
Conaty, Austin ;
Da Silva, Arlindo ;
Gu, Wei ;
Joiner, Joanna ;
Koster, Randal D. ;
Lucchesi, Robert ;
Molod, Andrea ;
Owens, Tommy ;
Pawson, Steven ;
Pegion, Philip ;
Redder, Christopher R. ;
Reichle, Rolf ;
Robertson, Franklin R. ;
Ruddick, Albert G. ;
Sienkiewicz, Meta ;
Woollen, Jack .
JOURNAL OF CLIMATE, 2011, 24 (14) :3624-3648
[38]  
Rivas-Soriano L., 2001, MON WEATHER REV, V129, P2998, DOI DOI 10.1175/1520-0493
[39]  
Rivas-Soriano L., 2001, J GEOPHYS RES, V106, P891
[40]  
Rivas-Soriano L., 2001, METEOROL APPL, V8, P169