LiMn0.8Fe0.2PO4/Carbon Nanospheres@Graphene Nanoribbons Prepared by the Biomineralization Process as the Cathode for Lithium-Ion Batteries

被引:69
作者
Hou, Yu-Kun [1 ]
Pan, Gui-Ling [2 ]
Sun, Yan-Yun [1 ]
Gao, Xue-Ping [1 ]
机构
[1] Nankai Univ, Sch Mat Sci & Engn, Inst New Energy Mat Chem, Tianjin 300350, Peoples R China
[2] Nankai Univ, Minist Educ, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
关键词
lithium-ion battery; cathode; phosphate; nanostructure; biomineralization; NITROGEN-DOPED GRAPHENE; RAMAN-SPECTROSCOPY; OXYGEN VACANCIES; PERFORMANCE; LIFEPO4; MICROSPHERES; MECHANISM; PROGRESS; DEFECTS; MATRIX;
D O I
10.1021/acsami.8b02736
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Biomineralization technology is a feasible and promising route to fabricate phosphate cathode materials with hierarchical nanostructure for high-performance lithium-ion batteries (LIBs). In this work, to improve the electrochemical performance of LiMn0.8Fe0.2PO4 (LMFP), hierarchical LMFP/carbon nanospheres are wrapped in situ with N-doped graphene nanoribbons (GNRs) via biomineralization by using yeast cells as the nucleating agent, self-assembly template, and carbon source. Such LMFP nanospheres are assembled by more fine nanocrystals with an average size of 18.3 nm. Moreover, the preferential crystal orientation along the [010] direction and certain antisite lattice defects can be identified in LMFP nanocrystals, which promote rapid diffusion of Li ions and generate more active sites for the electrochemical reaction. Moreover, such N-doped GNR networks, wrapped between LMFP/carbon nanospheres, are beneficial to the fast mobility of electrons and good penetration of the electrolyte. As expected, the as-prepared LMFP/carbon multicomposite presents the outstanding electrochemical performance, including the large initial discharge capacity of 168.8 mA h g(-1), good rate capability, and excellent long-term cycling stability over 2000 cycles. Therefore, the biomineralization method is demonstrated here to be effective to manipulate the microstructure of multicomponent phosphate cathode materials based on the requirement of capacity, rate capability, and cycle stability for LIBs.
引用
收藏
页码:16500 / 16510
页数:11
相关论文
共 59 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
[Anonymous], 2011, ANGEW CHEM INT ED, DOI DOI 10.1002/ANGE.201103163
[3]   Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation [J].
Badi, Shri-Prakash ;
Wagemaker, Marnix ;
Ellis, Brian L. ;
Singh, Deepak P. ;
Borghols, Wouter J. H. ;
Kan, Wang Hay ;
Ryan, D. H. ;
Mulder, Fokko M. ;
Nazar, Linda F. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10085-10093
[4]  
BRADY D, 1994, APPL MICROBIOL BIOT, V41, P149, DOI 10.1007/BF00166098
[5]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341
[6]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[7]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[8]   Biomimetic self-templating supramolecular structures [J].
Chung, Woo-Jae ;
Oh, Jin-Woo ;
Kwak, Kyungwon ;
Lee, Byung Yang ;
Meyer, Joel ;
Wang, Eddie ;
Hexemer, Alexander ;
Lee, Seung-Wuk .
NATURE, 2011, 478 (7369) :364-368
[9]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[10]   High-Performance Lithium-Ion Cathode LiMn0.7Fe0.3PO4/C and the Mechanism of Performance Enhancements through Fe Substitution [J].
Ding, Bo ;
Xiao, Pengfei ;
Ji, Ge ;
Ma, Yue ;
Lu, Li ;
Lee, Jim Yang .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12120-12126