Molecular generative model based on conditional variational autoencoder for de novo molecular design

被引:245
作者
Lim, Jaechang [1 ]
Ryu, Seongok [1 ]
Kim, Jin Woo [1 ]
Kim, Woo Youn [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, KI Artificial Intelligence, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Molecular design; Conditional variational autoencoder; Deep learning; CHEMICAL SPACE; DRUG DISCOVERY;
D O I
10.1186/s13321-018-0286-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose a molecular generative model based on the conditional variational autoencoder for de novo molecular design. It is specialized to control multiple molecular properties simultaneously by imposing them on a latent space. As a proof of concept, we demonstrate that it can be used to generate drug-like molecules with five target properties. We were also able to adjust a single property without changing the others and to manipulate it beyond the range of the dataset.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 2015, CoRR abs/1511.05644
[2]  
[Anonymous], P 35 INT C MACHINE L
[3]  
[Anonymous], 2017, Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models
[4]  
[Anonymous], 2016, SEQUENCE TUTOR CONSE
[5]  
[Anonymous], ARXIV171107839
[6]  
[Anonymous], 2017, P INT C MACH LEARN
[7]  
Bjerrum E. J., 2017, ARXIV170504612
[8]   Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review [J].
Cheng, Tiejun ;
Li, Qingliang ;
Zhou, Zhigang ;
Wang, Yanli ;
Bryant, Stephen H. .
AAPS JOURNAL, 2012, 14 (01) :133-141
[9]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[10]   Generative Recurrent Networks for De Novo Drug Design [J].
Gupta, Anvita ;
Mueller, Alex T. ;
Huisman, Berend J. H. ;
Fuchs, Jens A. ;
Schneider, Petra ;
Schneider, Gisbert .
MOLECULAR INFORMATICS, 2018, 37 (1-2)