Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature

被引:0
作者
Chrusciel, Piotr T. [1 ,2 ,3 ]
Delay, Erwann [4 ]
机构
[1] LMPT, Tours, France
[2] Math Inst, Oxford OX1 3LB, England
[3] Univ Oxford Hertford Coll, Oxford OX1 3BW, England
[4] Fac Sci, Lab Anal Non Lineaire & Geometrie, F-84000 Avignon, France
关键词
EINSTEIN CONSTRAINT EQUATIONS; RIEMANNIAN-MANIFOLDS; MASS; EXISTENCE; VACUUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions n >= 3, or fast decay conditions in n >= 5, or a genericity condition in n >= 9, can be deformed, by a deformation that is supported arbitrarily far in the asymptotic region, to ones that are exactly Kottler ("Schwarzschild-adS") in the asymptotic region.
引用
收藏
页码:343 / 381
页数:39
相关论文
共 50 条
[41]   Submanifolds with constant scalar curvature in a space form [J].
Araujo, Jogli G. ;
de Lima, Henrique F. ;
dos Santos, Fabio R. ;
Velasquez, Marco Antonio L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) :488-498
[42]   Stable hypersurfaces in spheres with constant scalar curvature [J].
Zhu, Peng ;
Jin, Yadong .
ADVANCES IN GEOMETRY, 2016, 16 (02) :199-204
[43]   ISOPARAMETRIC HYPERSURFACES AND METRICS OF CONSTANT SCALAR CURVATURE [J].
Henry, Guillermo ;
Petean, Jimmy .
ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (01) :53-67
[44]   Manifolds of positive Ricci curvature, quadratically asymptotically nonnegative curvature, and infinite Betti numbers [J].
Jiang, Huihong ;
Yang, Yihu .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (10) :2183-2200
[45]   Manifolds of positive Ricci curvature, quadratically asymptotically nonnegative curvature, and infinite Betti numbers [J].
Huihong Jiang ;
Yihu Yang .
Science China Mathematics, 2022, 65 :2183-2200
[46]   RIGIDITY RESULTS FOR COMPLETE MANIFOLDS WITH NONNEGATIVE SCALAR CURVATURE [J].
Zhu, Jintian .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 125 (03) :623-644
[47]   Sequences of three dimensional manifolds with positive scalar curvature [J].
Basilio, J. ;
Sormani, C. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 77
[48]   Desingularizing positive scalar curvature 4-manifolds [J].
Kazaras, Demetre .
MATHEMATISCHE ANNALEN, 2024, 390 (04) :4951-4972
[49]   Curvature Bounds for Surfaces in Hyperbolic 3-Manifolds [J].
Breslin, William .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (05) :994-1010
[50]   ON STATIC THREE-MANIFOLDS WITH POSITIVE SCALAR CURVATURE [J].
Ambrozio, Lucas .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 107 (01) :1-45