Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature

被引:0
作者
Chrusciel, Piotr T. [1 ,2 ,3 ]
Delay, Erwann [4 ]
机构
[1] LMPT, Tours, France
[2] Math Inst, Oxford OX1 3LB, England
[3] Univ Oxford Hertford Coll, Oxford OX1 3BW, England
[4] Fac Sci, Lab Anal Non Lineaire & Geometrie, F-84000 Avignon, France
关键词
EINSTEIN CONSTRAINT EQUATIONS; RIEMANNIAN-MANIFOLDS; MASS; EXISTENCE; VACUUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions n >= 3, or fast decay conditions in n >= 5, or a genericity condition in n >= 9, can be deformed, by a deformation that is supported arbitrarily far in the asymptotic region, to ones that are exactly Kottler ("Schwarzschild-adS") in the asymptotic region.
引用
收藏
页码:343 / 381
页数:39
相关论文
共 50 条
[31]   On far-outlying constant mean curvature spheres in asymptotically flat Riemannian 3-manifolds [J].
Chodosh, Otis ;
Eichmair, Michael .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 767 :161-191
[32]   INVERSE SCATTERING WITH PARTIAL DATA ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS [J].
Hora, Raphael ;
Barreto, Antonio Sa .
ANALYSIS & PDE, 2015, 8 (03) :513-559
[33]   SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPHERES [J].
Zhang, Qin .
GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) :67-75
[34]   On the Classification of Randers Manifolds of Constant Curvature [J].
Bejancu, Aurel ;
Farran, Hani Reda .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03) :227-239
[35]   Topological invariants for the scalar curvature problem on manifolds [J].
Abdullah, Khadijah ;
Chtioui, Hichem .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2023, 14 (02) :31-47
[36]   On the scalar curvature of constant mean curvature hypersurfaces in space forms [J].
Alias, Luis J. ;
Carolina Garcia-Martinez, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) :579-587
[37]   Curvature in the balance: the Weyl functional and scalar curvature of 4-manifolds [J].
LeBrun, Claude .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (06) :2737-2763
[38]   Stability of the PMT and RPI for asymptotically hyperbolic manifolds foliated by IMCF [J].
Allen, Brian .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[39]   Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds [J].
Bouclet, Jean-Marc .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (02) :115-136
[40]   Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting [J].
Dilts, James ;
Maxwell, David .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (05) :1127-1168