Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature

被引:0
作者
Chrusciel, Piotr T. [1 ,2 ,3 ]
Delay, Erwann [4 ]
机构
[1] LMPT, Tours, France
[2] Math Inst, Oxford OX1 3LB, England
[3] Univ Oxford Hertford Coll, Oxford OX1 3BW, England
[4] Fac Sci, Lab Anal Non Lineaire & Geometrie, F-84000 Avignon, France
关键词
EINSTEIN CONSTRAINT EQUATIONS; RIEMANNIAN-MANIFOLDS; MASS; EXISTENCE; VACUUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that asymptotically hyperbolic initial data satisfying smallness conditions in dimensions n >= 3, or fast decay conditions in n >= 5, or a genericity condition in n >= 9, can be deformed, by a deformation that is supported arbitrarily far in the asymptotic region, to ones that are exactly Kottler ("Schwarzschild-adS") in the asymptotic region.
引用
收藏
页码:343 / 381
页数:39
相关论文
共 50 条
[21]   From equation prescribing the scalar curvature to constraint equationsof general relativity on asymptotically hyperbolic variety [J].
Gicquaud, Romain .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (02) :200-227
[22]   SOME REMARKS ON BACH-FLAT MANIFOLDS WITH POSITIVE CONSTANT SCALAR CURVATURE [J].
Fu, Hai-Ping ;
Xu, Gao-Bo ;
Tao, Yong-Qian .
COLLOQUIUM MATHEMATICUM, 2019, 155 (02) :187-196
[23]   Asymptotic Gluing of Asymptotically Hyperbolic Vacuum Initial Data Sets [J].
Isenberg, James ;
Lee, John M. ;
Allen, Iva Stavrov .
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS IV, PT 2: GENERAL RELATIVITY, GEOMETRY, AND PDE, 2011, 554 :93-+
[24]   A GLUING FORMULA FOR THE ANALYTIC TORSION ON HYPERBOLIC MANIFOLDS WITH CUSPS [J].
Pfaff, Jonathan .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) :673-743
[25]   A Volume Comparison Theorem for Asymptotically Hyperbolic Manifolds [J].
Brendle, Simon ;
Chodosh, Otis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) :839-846
[26]   Supersymmetric rigidity of asymptotically locally hyperbolic manifolds [J].
Hijazi, Oussama ;
Montiel, Sebastian .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (03)
[27]   On the isolation phenomena of locally conformally flat manifolds with constant scalar curvature - Submanifolds versions [J].
Cheng, Xiuxiu ;
Hu, Zejun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) :1147-1157
[28]   A Prescribed Scalar and Boundary Mean Curvature Problem and the Yamabe Classification on Asymptotically Euclidean Manifolds with Inner Boundary [J].
Sicca, Vladmir ;
Tsogtgerel, Gantumur .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
[29]   The Yamabe flow on asymptotically Euclidean manifolds with nonpositive Yamabe constant [J].
Carron, Gilles ;
Chen, Eric ;
Wang, Yi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (06)
[30]   A family of asymptotically hyperbolic manifolds with arbitrary energy-momentum vectors [J].
Cortier, Julien .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)