BACKBONE COLORINGS AND GENERALIZED MYCIELSKI GRAPHS

被引:7
|
作者
Miskuf, Jozef [1 ]
Skrekovski, Riste [2 ]
Tancer, Martin [3 ,4 ]
机构
[1] Univ Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 1000, Slovenia
[3] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[4] Charles Univ Prague, Dept Appl Math, Prague 11800, Czech Republic
关键词
backbone coloring; graph coloring; generalized Mycielski construction; triangle-free graph;
D O I
10.1137/080717596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G and its spanning tree T the backbone chromatic number, BBC(G, T), is defined as the minimum k such that there exists a coloring c : V (G). {1, 2,..., k} satisfying vertical bar c(u)-c(v)vertical bar >= 1 if uv is an element of E(G) and vertical bar c(u)-c(v)vertical bar >= 2 if uv is an element of E(T). Broersma et al. [J. Graph Theory, 55 (2007), pp. 137-152] asked whether there exists a constant c such that for every triangle-free graph G with an arbitrary spanning tree T the inequality BBC(G, T) <= chi(G) + c holds. We answer this question negatively by showing the existence of triangle-free graphs R-n and their spanning trees T-n such that BBC(R-n, T-n) = 2 chi(R-n)-1 = 2n-1. In order to answer the question, we obtain a result of independent interest. We modify the well-known Mycielski construction and construct triangle-free graphs J(n) for every integer n, with chromatic number n and 2-tuple chromatic number 2n (here 2 can be replaced by any integer t).
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 50 条
  • [41] OPTIMAL BACKBONE COLORING OF SPLIT GRAPHS WITH MATCHING BACKBONES
    Turowski, Krzysztof
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 157 - 169
  • [42] Backbone coloring for triangle-free planar graphs
    Bu, Yue-hua
    Zhang, Shui-ming
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (03): : 819 - 824
  • [43] Backbone coloring of planar graphs without special circles
    Bu, Yuehua
    Li, Yulin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (46) : 6464 - 6468
  • [44] Backbone coloring for triangle-free planar graphs
    Yue-hua Bu
    Shui-ming Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 819 - 824
  • [45] Backbone Coloring for Triangle-free Planar Graphs
    Yue-hua BU
    Shui-ming ZHANG
    ActaMathematicaeApplicataeSinica, 2017, 33 (03) : 819 - 824
  • [46] The smallest hard-to-color graphs for the classical, total and strong colorings of vertices
    Kubale, M
    Manusewski, K
    CONTROL AND CYBERNETICS, 1999, 28 (02): : 355 - 365
  • [47] A Combinatorial Algorithm for Minimum Weighted Colorings of Claw-Free Perfect Graphs
    Xueliang Li
    Wenan Zang
    Journal of Combinatorial Optimization, 2005, 9 : 331 - 347
  • [48] A combinatorial algorithm for minimum weighted colorings of claw-free perfect graphs
    Li, XL
    Zang, WN
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2005, 9 (04) : 331 - 347
  • [49] Perfectly Sampling k ≥ (8/3+o(1))Δ-Colorings in Graphs
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1589 - 1600
  • [50] List Colorings of K5-Minor-Free Graphs With Special List Assignments
    Cranston, Daniel W.
    Pruchnewski, Anja
    Tuza, Zsolt
    Voigt, Margit
    JOURNAL OF GRAPH THEORY, 2012, 71 (01) : 18 - 30