BACKBONE COLORINGS AND GENERALIZED MYCIELSKI GRAPHS

被引:7
|
作者
Miskuf, Jozef [1 ]
Skrekovski, Riste [2 ]
Tancer, Martin [3 ,4 ]
机构
[1] Univ Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Dept Math, Ljubljana 1000, Slovenia
[3] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[4] Charles Univ Prague, Dept Appl Math, Prague 11800, Czech Republic
关键词
backbone coloring; graph coloring; generalized Mycielski construction; triangle-free graph;
D O I
10.1137/080717596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G and its spanning tree T the backbone chromatic number, BBC(G, T), is defined as the minimum k such that there exists a coloring c : V (G). {1, 2,..., k} satisfying vertical bar c(u)-c(v)vertical bar >= 1 if uv is an element of E(G) and vertical bar c(u)-c(v)vertical bar >= 2 if uv is an element of E(T). Broersma et al. [J. Graph Theory, 55 (2007), pp. 137-152] asked whether there exists a constant c such that for every triangle-free graph G with an arbitrary spanning tree T the inequality BBC(G, T) <= chi(G) + c holds. We answer this question negatively by showing the existence of triangle-free graphs R-n and their spanning trees T-n such that BBC(R-n, T-n) = 2 chi(R-n)-1 = 2n-1. In order to answer the question, we obtain a result of independent interest. We modify the well-known Mycielski construction and construct triangle-free graphs J(n) for every integer n, with chromatic number n and 2-tuple chromatic number 2n (here 2 can be replaced by any integer t).
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 50 条
  • [21] GENERALIZED FRACTIONAL TOTAL COLORINGS OF COMPLETE GRAPHS
    Karafova, Gabriela
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 665 - 676
  • [22] Cliques and colorings in generalized Paley graphs and an approach to synchronization
    Schneider, Csaba
    Silva, Ana C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (06)
  • [23] The Minimum Number of Dependent Arcs and a Related Parameter of Generalized Mycielski Graphs
    Lai, Hsin-Hao
    Lih, Ko-Wei
    UTILITAS MATHEMATICA, 2013, 91 : 305 - 317
  • [24] Backbone colorings for networks
    Broersma, H
    Fomin, FV
    Golovach, PA
    Woeginger, GJ
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 131 - 142
  • [25] Mycielski type constructions for hypergraphs associated with fractional colorings
    J. Luviano
    A. Montejano
    L. Montejano
    D. Oliveros
    Boletín de la Sociedad Matemática Mexicana, 2014, 20 (1) : 1 - 16
  • [26] Mycielski type constructions for hypergraphs associated with fractional colorings
    Luviano, J.
    Montejano, A.
    Montejano, L.
    Oliveros, D.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (01): : 1 - 16
  • [27] On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Xu, Jin
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 253 - 266
  • [28] GENERALIZED K-TUPLE COLORINGS OF CYCLES AND OTHER GRAPHS
    BRIGHAM, RC
    DUTTON, RD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (01) : 90 - 94
  • [29] Interval edge colorings of the generalized lexicographic product of some graphs
    Jin, Meiqin
    Chen, Ping
    Tian, Shuangliang
    AIMS MATHEMATICS, 2024, 9 (11): : 30597 - 30611
  • [30] Domination parameters in Mycielski graphs
    Chen, Xue-gang
    Xing, Hua-ming
    UTILITAS MATHEMATICA, 2006, 71 : 235 - 244