Small area estimation using unmatched sampling and linking models

被引:34
作者
You, Y [1 ]
Rao, JNK [1 ]
机构
[1] Stat Canada, Household Survey Methods Div, Ottawa, ON K1A 0T6, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2002年 / 30卷 / 01期
关键词
area level model; census undercoverage; Gibbs sampling; log transformation; unmatched model; small area estimation;
D O I
10.2307/3315862
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors use a hierarchical Bayes approach to area level unmatched sampling and linking models for small area estimation. Empirically they compare inferences under unmatched models with those obtained under the customary matched sampling and linking models. They apply the proposed method to Canadian census undercoverage estimation, developing a full hierarchical Bayes approach using Markov Chain Monte Carlo sampling methods. They show that the method can provide efficient model-based estimates. They use posterior predictive distributions to assess model fit.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 23 条