Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials

被引:28
作者
Kong, Fanying [1 ]
Wang, Aijie [1 ,2 ]
Ren, Hong-Yu [1 ]
机构
[1] Harbin Inst Technol, Sch Municipal & Environm Engn, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Bioelectrochemical system (BES); 4-Chlorophenol (4-CP); Dechlorination; Biocathode; Carbon-based material; MICROBIAL FUEL-CELLS; MESH CURRENT COLLECTORS; AZO-DYE; BIOELECTRICITY GENERATION; REDUCTIVE DECHLORINATION; ELECTRICITY-GENERATION; DECOLORIZATION; DEGRADATION; ELECTRODES; MINERALIZATION;
D O I
10.1016/j.biortech.2014.05.049
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 +/- 0.0002, 0.0374 +/- 0.0004, and 0.0239 +/- 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Omega in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Omega), BES-GG (387.3 Omega), and BES-CB (193.8 Omega). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 258
页数:7
相关论文
共 35 条
[1]   Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes [J].
Aelterman, Peter ;
Versichele, Mathias ;
Marzorati, Massimo ;
Boon, Nico ;
Verstraete, Willy .
BIORESOURCE TECHNOLOGY, 2008, 99 (18) :8895-8902
[2]   Dechlorination of Trichloroethene in a Continuous-Flow Bioelectrochemical Reactor: Effect of Cathode Potential on Rate, Selectivity, and Electron Transfer Mechanisms [J].
Aulenta, Federico ;
Tocca, Lorenzo ;
Verdini, Roberta ;
Reale, Priscilla ;
Majone, Mauro .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (19) :8444-8451
[3]   Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation [J].
Cardenas-Robles, Arely ;
Martinez, Eduardo ;
Rendon-Alcantar, Idelfonso ;
Frontana, Carlos ;
Gonzalez-Gutierrez, Linda .
BIORESOURCE TECHNOLOGY, 2013, 127 :37-43
[4]   Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell [J].
Chen, Yan-Ming ;
Wang, Chin-Tsan ;
Yang, Yung-Chin ;
Chen, Wei-Jung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) :11131-11137
[5]   Electrical stimulation of microbial PCB degradation in sediment [J].
Chun, Chan Lan ;
Payne, Rayford B. ;
Sowers, Kevin R. ;
May, Harold D. .
WATER RESEARCH, 2013, 47 (01) :141-152
[6]   Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor [J].
Cui, Dan ;
Guo, Yu-Qi ;
Cheng, Hao-Yi ;
Liang, Bin ;
Kong, Fan-Ying ;
Lee, Hyung-Sool ;
Wang, Ai-Jie .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 239 :257-264
[7]   Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation [J].
Fang, Zhou ;
Song, Hai-Liang ;
Cang, Ning ;
Li, Xian-Ning .
BIORESOURCE TECHNOLOGY, 2013, 144 :165-171
[8]   Phenol degradation in bio-electrochemical cells [J].
Friman, Hen ;
Schechter, Alex ;
Nitzan, Yeshayahu ;
Cahan, Rivka .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2013, 84 :155-160
[9]   Application of bacterial biocathodes in microbial fuel cells [J].
He, Zhen ;
Angenent, Largus T. .
ELECTROANALYSIS, 2006, 18 (19-20) :2009-2015
[10]   Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J].
He, Zhen ;
Mansfeld, Florian .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :215-219